LARGE-SCALE STRUCTURE NON-GAUSSIANITIES WITH MODAL METHODS

Marcel Schmittfull

BCCP Fellow (UCB/LBNL)

arXiv:1108.3813 (PRD 86 123524)

arXiv:1207.5678 (PRD 88 063512)

Collaborators

Paul Shellard (DAMTP Cambridge)

Donough Regan (Sussex)

James Fergusson (DAMTP Cambridge)

Berkeley 22 Oct 2013

OVERVIEW

- Deviations from Gaussianity: Motivation
- Theoretical expectations
- Non-Gaussian initial conditions
- Estimating non-Gaussianity
- Simulation results

Part II: CMB lensing

ullet Vacuum expectation value of a quantum field perturbation $\delta arphi$ with inflationary Lagrangian $\mathcal L$

$$\langle \Omega | \delta \varphi_{\mathbf{k}_1} \cdots \delta \varphi_{\mathbf{k}_n} | \Omega \rangle = \frac{\int \mathcal{D}[\delta \varphi] \delta \varphi_{\mathbf{k}_1} \cdots \delta \varphi_{\mathbf{k}_n} \exp(i \int_C \mathcal{L}(\delta \varphi_{\mathbf{k}}))}{\int \mathcal{D}[\delta \varphi] \exp(i \int_C \mathcal{L}(\delta \varphi_{\mathbf{k}}))}$$

• Free theory $\mathcal{L} \sim \delta \varphi^2 \quad \Rightarrow \quad e^{i \int_C \mathcal{L}}$ is Gaussian

$$\langle \Omega | \delta \varphi_{\mathbf{k}_1} \cdots \delta \varphi_{\mathbf{k}_n} | \Omega \rangle = \begin{cases} \text{determined by 2-point function,} & n \text{ even,} \\ 0, & n \text{ odd.} \end{cases}$$

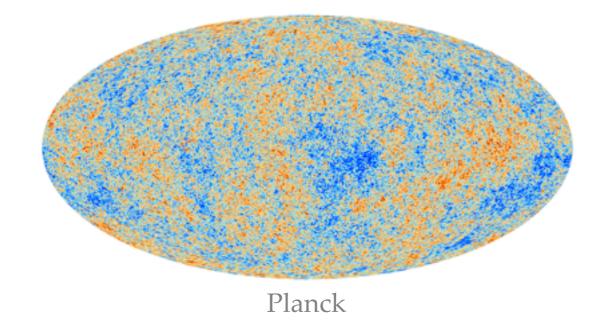
• *Interacting* theory $\mathcal{L} \sim \delta \varphi^3, \delta \varphi^4, \ldots \Rightarrow e^{i \int_C \mathcal{L}}$ is *non-Gaussian*

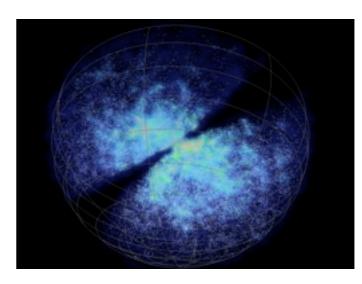
 $\langle \Omega | \delta \varphi_{\mathbf{k}_1} \cdots \delta \varphi_{\mathbf{k}_n} | \Omega \rangle \neq 0$ possible for all n, \mathbf{k} -dependence characterises interactions

Inflationary interactions are mapped to specific types of non-Gaussianity

As the universe expands, quantum fluctuations become classical perturbations Φ , whose probability density $\Pr[\Phi]$ is determined by the inflationary Lagrangian \mathcal{L}

$$\langle \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \rangle = \int \mathcal{D}[\Phi] \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \Pr[\Phi]$$
Bardeen potential in MDU, $\Phi = -3\mathcal{R}/5$

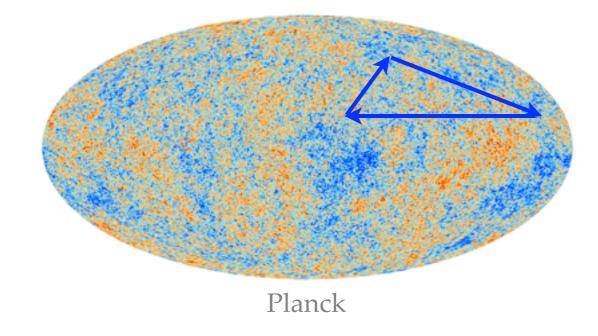


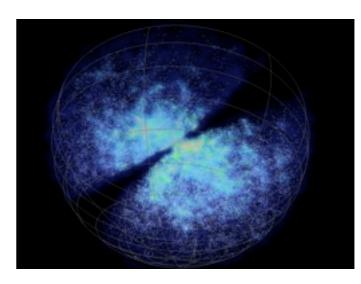


6df galaxy survey

As the universe expands, quantum fluctuations become classical perturbations Φ , whose probability density $\Pr[\Phi]$ is determined by the inflationary Lagrangian \mathcal{L}

$$\langle \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \rangle = \int \mathcal{D}[\Phi] \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \Pr[\Phi]$$
Bardeen potential in MDU, $\Phi = -3\mathcal{R}/5$

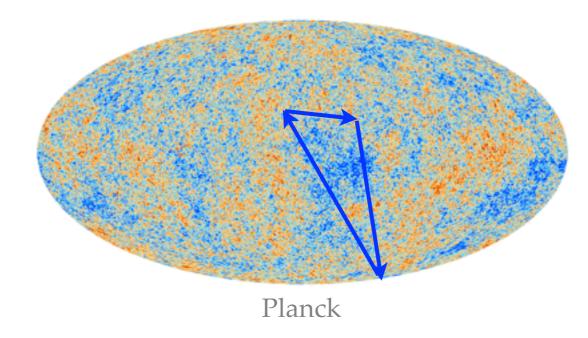


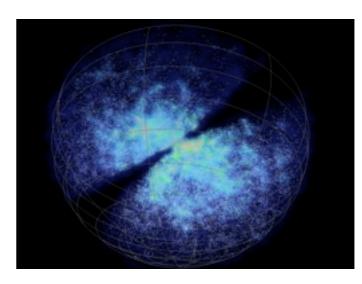


6df galaxy survey

As the universe expands, quantum fluctuations become classical perturbations Φ , whose probability density $\Pr[\Phi]$ is determined by the inflationary Lagrangian \mathcal{L}

$$\langle \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \rangle = \int \mathcal{D}[\Phi] \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \Pr[\Phi]$$
 Bardeen potential in MDU, $\Phi = -3\mathcal{R}/5$

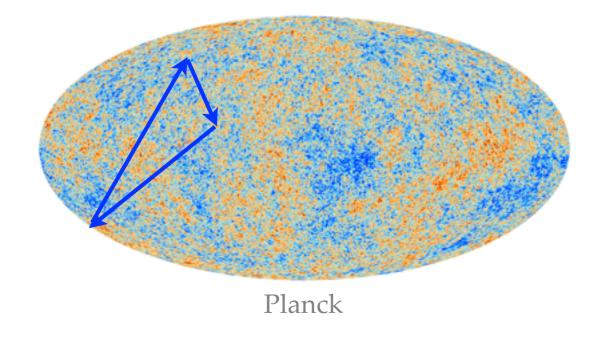


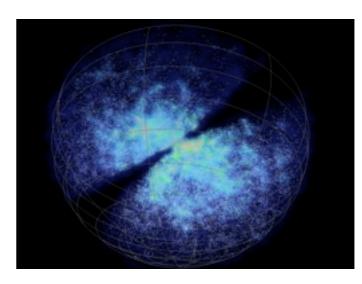


6df galaxy survey

As the universe expands, quantum fluctuations become classical perturbations Φ , whose probability density $\Pr[\Phi]$ is determined by the inflationary Lagrangian \mathcal{L}

$$\langle \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \rangle = \int \mathcal{D}[\Phi] \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \Pr[\Phi]$$
 Bardeen potential in MDU, $\Phi = -3\mathcal{R}/5$

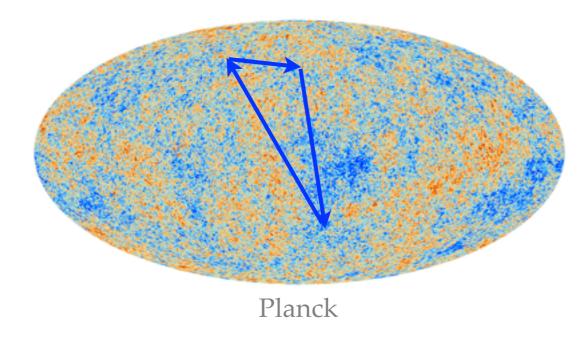


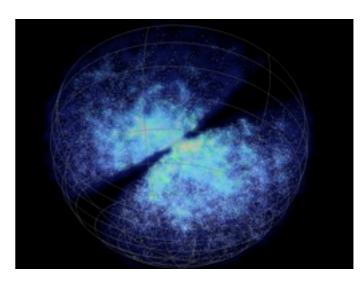


6df galaxy survey

As the universe expands, quantum fluctuations become classical perturbations Φ , whose probability density $\Pr[\Phi]$ is determined by the inflationary Lagrangian \mathcal{L}

$$\langle \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \rangle = \int \mathcal{D}[\Phi] \Phi_{\mathbf{k}_1} \cdots \Phi_{\mathbf{k}_n} \Pr[\Phi]$$
 Bardeen potential in MDU, $\Phi = -3\mathcal{R}/5$





6df galaxy survey

As the universe expands, quantum fluctuations become classical

perturbations & whose prob

ty Dr[] is determined

rdeen potential in DU, $\Phi = -3\mathcal{R}/5$

by the i

Primordial non-Gaussianity =

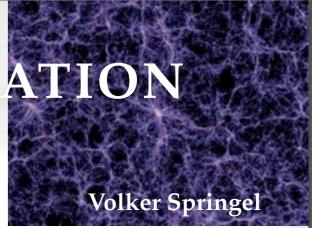
Constra observa

Accelerator in the sky

(reaching energy scale of inflation)

Planck

6df galaxy survey



▶ Why measure in large-scale structures?

Advantages:

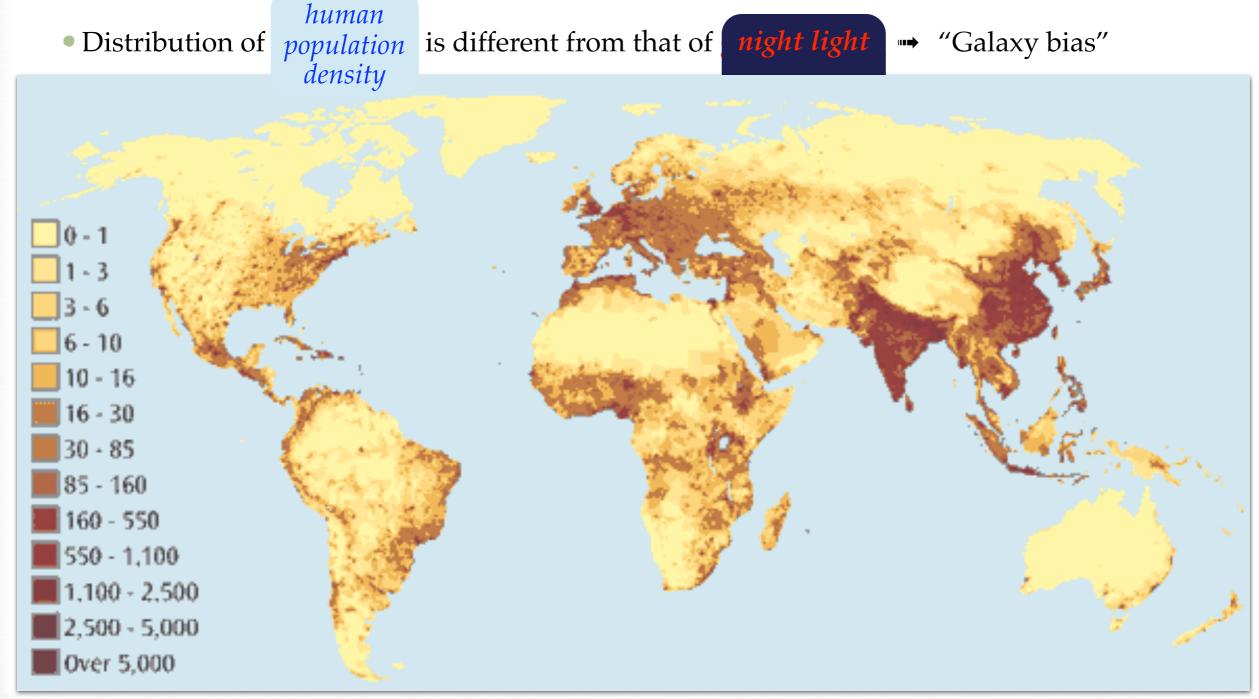
- LSS = most promising window for non-Gaussianity after Planck
- In principle more information than CMB because 3D
- Lots of data available or coming up (e.g. BOSS, DES, Euclid, LSST, WFIRST, SKA, ...)
- Single field inflation can be ruled out with halo bias (high sensitivity to squeezed limit of the bispectrum)

Complications:

- Non-linear gravity produces late time non-Gaussianity
- Non-linear evolution of primordial input non-Gaussianity
- Difficult modeling and data analysis
- Observational issues: Halo bias, redshifts space distortions, survey geometry, ...

- ▶ Even in a (boring) Gaussian universe, non-Gaussianity from gravity is interesting
 - Distribution of dark matter is different from that of galaxies
 - "Galaxy bias"

Even in a (boring) Gaussian universe, non-Gaussianity from gravity is interesting



Even in a (boring) Gaussian universe, non-Gaussianity from gravity is interesting

- ▶ Even in a (boring) Gaussian universe, non-Gaussianity from gravity is interesting

Simplest ansatz:

$$\delta_g(\mathbf{x}) \sim b_1 \delta(\mathbf{x}) + \frac{1}{2} b_2 \delta(\mathbf{x})^2 + \cdots$$

3-point function pins down bias model & parameters (b_1 , b_2 , ...), which is required to do cosmology with LSS data

- Break degeneracies of systematic effects or cosmological parameters that are present at the power spectrum (2-point) level
 - **■** Improve cosmological parameter constraints

▶ Late-time motivation for LSS non-Gaussianity:

From (naive)
$$\delta_g(\mathbf{x}) \sim b_1 \delta(\mathbf{x}) + \frac{1}{2} b_2 \delta(\mathbf{x})^2 + \cdots$$
 we get

 δ : DM density

 δ_g : galaxy density

 b_1 : linear bias

*b*₂: quadratic bias

Galaxy power spectrum (2-point)

Galaxy bispectrum (3-point)

$$P_g(k) \approx b_1^2 P_\delta(k)$$

- Cannot distinguish rescaling of P_{δ} from b_1
 - $\rightarrow b_1$ - Ω_m degeneracy

$$B_g(k_1, k_2, k_3) \approx b_1^3 B_\delta(k_1, k_2, k_3) + b_1^2 b_2(P_\delta(k_1) P_\delta(k_2) + \text{perms})$$

- Break b_1 - Ω_m degeneracy, i.e. can measure Ω_m from LSS alone
- Measure *b*₂

Fry 1994 Verde *et al.* 1997-2002 Scoccimarro *et al.* 1998 Sefusatti *et al.* 2006

<u>But:</u> No large-scale structure non-Gaussianity (bispectrum) pipeline Complicated modeling (non-linear DM, bias, RSD, correlations, survey geometry, ...)

3-POINT CORRELATIONS (BISPECTRUM)

POWER SPECTRUM + BISPECTRUM

• 2-point function:

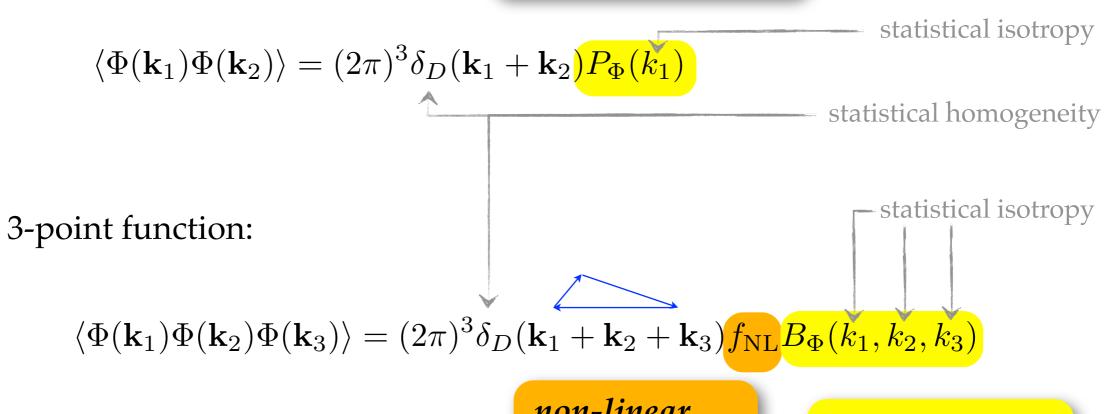
power spectrum P_{Φ}

$$\langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \rangle = (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2) P_{\Phi}(k_1)$$
 statistical isotropy statistical homogeneity

POWER SPECTRUM + BISPECTRUM

• 2-point function:

power spectrum P_{Φ}



non-linear $amplitude f_{\rm NL}$

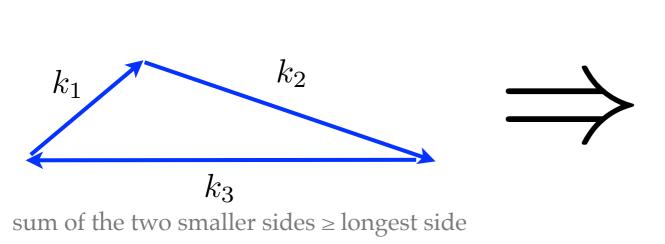
bispectrum B_Φ

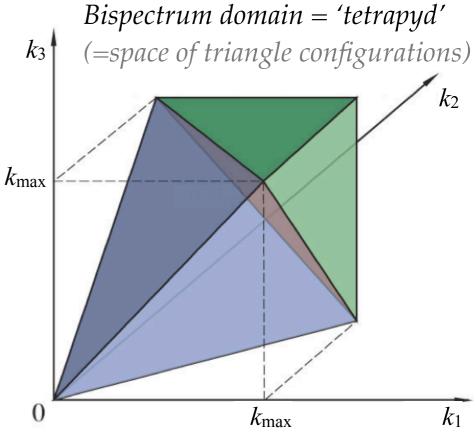
primary diagnostic for non-Gaussianity (vanishes for Gaussian Φ)

BISPECTRUM

- **Bispectrum (3-point correlation function in Fourier space)**
 - Defined for closed triangles (statistical homogeneity and isotropy)

$$\langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \Phi(\mathbf{k}_3) \rangle = (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) f_{NL} B_{\Phi}(k_1, k_2, k_3)$$
 non-linear amplitude bispectrum



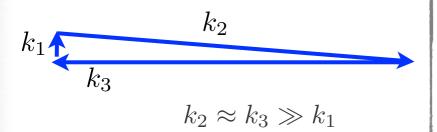


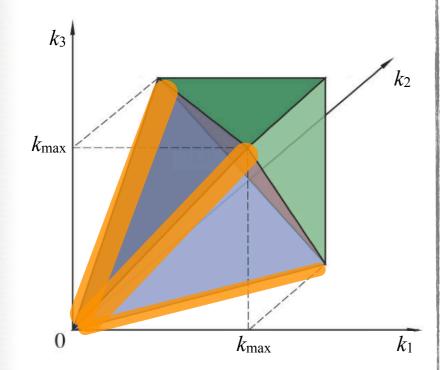
(every point corresponds to a triangle config.)

BISPECTRUM SHAPES

Different inflation models induce different momentum dependencies (shapes) of $B_{\Phi}(k_1, k_2, k_3)$

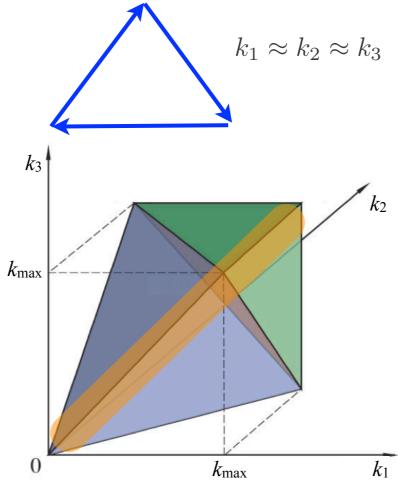
Squeezed triangles (local shape)





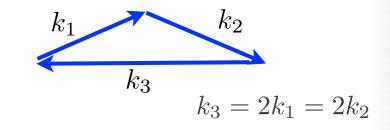
Arises in multifield inflation; detection would rule out all single field models!

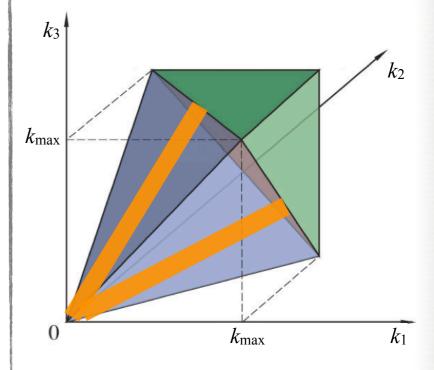
Equilateral triangles



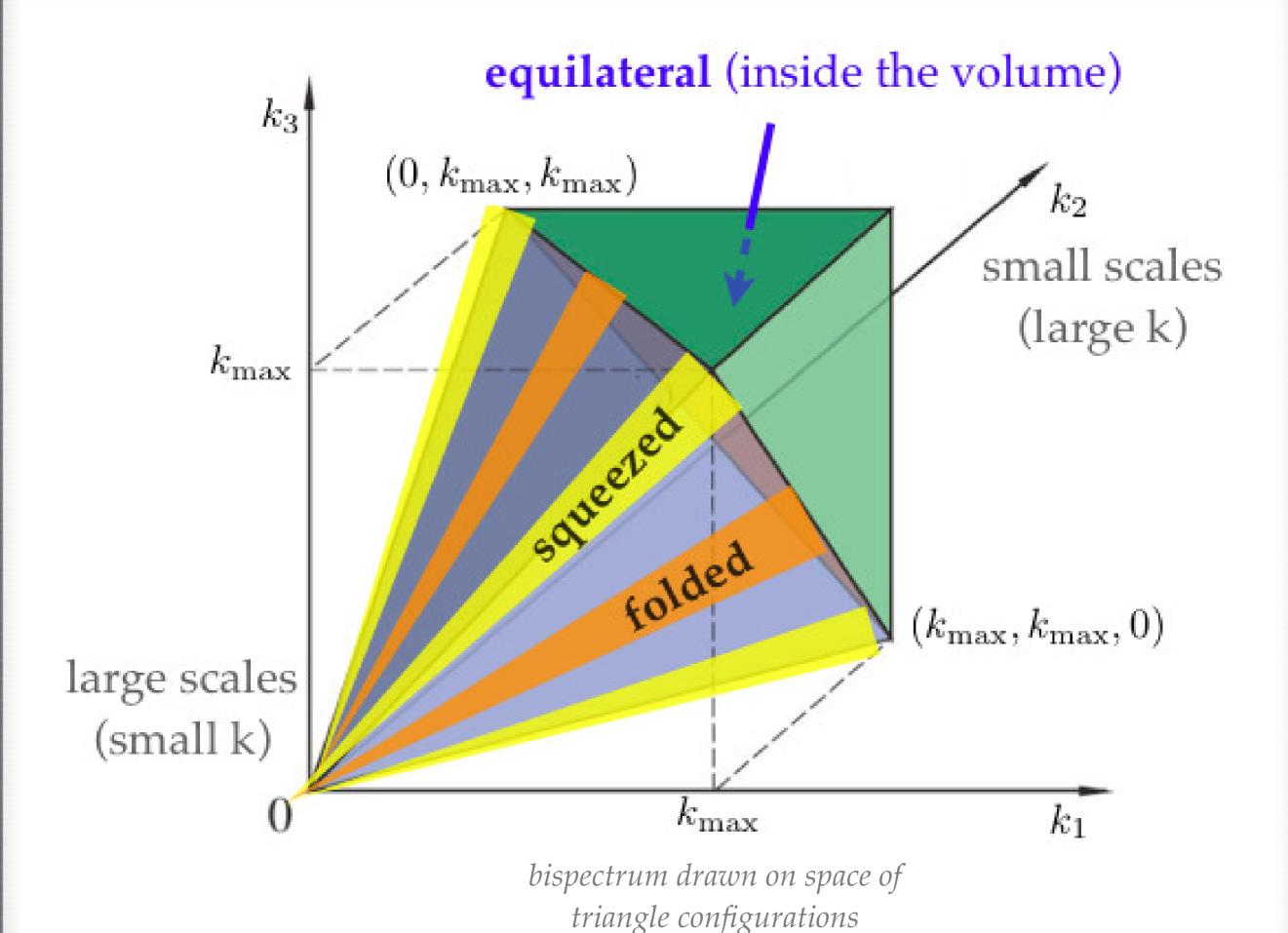
Typically higher derivative kinetic terms, e.g. DBI inflation

Folded triangles





E.g. non-Bunch-Davies vacuum



NON-GAUSSIANITY IN LARGE SCALE STRUCTURES

NG IN LSS

$$B_{\delta} =$$

full matter bispectrum

$$B_{\delta}^{\mathrm{grav}}$$

gravitational

$$B_{\delta}^{
m prim}$$

primordial

NG IN LSS

 $B_{\delta} =$

full matter bispectrum $B_{\delta}^{
m grav}$

gravitational

 $\vdash B^{ ext{prim}}_{\delta}$

primordial

GRAVITATIONAL NG

Use perturbation theory on large scales:

e.g. Bernardeau, Colombi, Gaztanaga, Scoccimarro 2002

$$\delta(\mathbf{k}, t) = \sum_{n=1}^{\infty} D(t)^n \delta_n(\mathbf{k})$$

$$\delta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \cdots \int d^3 \mathbf{q}_n \delta_D(\mathbf{k} - \mathbf{q}_1 - \cdots - \mathbf{q}_n) F_n^{(s)}(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \cdots \delta_1(\mathbf{q}_n)$$

where

$$D(t) = \text{linear growth factor}$$
 $(= a(t) \text{ during matter domination})$

$$F_n^{(s)}$$
 = kernels determined by Newtonian equations of motion

GRAVITATIONAL NG

For Gaussian initial conditions (Gaussian δ_1) the leading order bispectrum from gravity is

$$\langle \delta(\mathbf{k}_1, t) \delta(\mathbf{k}_2, t) \delta(\mathbf{k}_3, t) \rangle = D^4(t) \langle \delta_1(\mathbf{k}_1) \delta_1(\mathbf{k}_2) \delta_2(\mathbf{k}_3) \rangle + 2 \text{ perms}$$

$$\Rightarrow B_{\delta}^{\text{grav}}(k_1, k_2, k_3) = 2P_{\delta}(k_1; t)P_{\delta}(k_2; t)F_2^{(s)}(\mathbf{k}_1, \mathbf{k}_2) + 2 \text{ perms}$$

$$F_2^{(s)}(\mathbf{k}_1, \mathbf{k}_2) = \frac{10}{14} + \frac{1}{2} \frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{k_1 k_2} \left(\frac{k_1}{k_2} + \frac{k_2}{k_1} \right) + \frac{2}{7} \left(\frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{k_1 k_2} \right)^2$$

from $\nabla \delta \cdot \mathbf{v}$ in continuity eqn. from $(\mathbf{v} \cdot \nabla)\mathbf{v}$ in Euler eqn.

maximum for $k_1 = k_2$ (folded), 0 for $k_1 = -k_2$ (squeezed)

$$P_{\delta}(k_1;t) \equiv (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2) D^2(t) \langle \delta_1(\mathbf{k}_1) \delta_1(\mathbf{k}_2) \rangle$$

$$\mathbf{k_1} \cdot \mathbf{k_2} = \frac{1}{2} (k_3^2 - k_1^2 - k_2^2)$$

NG IN LSS

 $B_{\delta} =$

full matter bispectrum $B_{\delta}^{
m grav}$

gravitational

 $B_{\delta}^{
m prim}$

primordial

PRIMORDIAL NG

Relation to density perturbation with Poisson equation (in linear theory):

linear growth function
(=1 on very large scales)

linear growth function
(= a(t) during matter domination)

$$\delta(\mathbf{k},t) = \frac{2}{3} \frac{c^2 k^2 T(k) D(t)}{\Omega_m H_0^2} \Phi(\mathbf{k}) \equiv M(k,t) \Phi(\mathbf{k})$$

$$\Rightarrow B_{\delta}^{\text{prim}}(k_1, k_2, k_3; t) = M(k_1, t) M(k_2, t) M(k_3, t) F_{\text{NL}} B_{\Phi}(k_1, k_2, k_3)$$
late time linear transfer primordial

time dependence: $B_{\delta}^{\text{prim}} \propto D^3(t), \ B_{\delta}^{\text{grav}} \propto D^4(t)$

 \triangleright easier to see primordial contribution at earlier times (high z)

SIMULATION SETUP

initial field with primordial non-Gaussianity

2LPT

S. Pueblas, R. Scoccimarro,

V. Springel

initial particle positions

Noody

Gadget-3 by V. Springel

reconstructed bispectrum and $f_{
m NL}^B$

bispectrum estimator

late time density perturbation

INITIAL CONDITIONS

initial field with primordial non-Gaussianity

2LPT

initial particle positions

reconstructed bispectrum and $f_{\rm NL}^B$

bispectrum estimator

late time density perturbation

INITIAL CONDITIONS: MATHS

Aim: Create non-Gaussian field

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + \Phi_{NG}(\mathbf{x})$$
full field Gaussian non-Gaussian part

INITIAL CONDITIONS: MATHS

Aim: Create non-Gaussian field

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + \Phi_{NG}(\mathbf{x})$$
full field Gaussian non-Gaussian part

Simplest case: local non-Gaussianity $\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{\mathrm{NL}}(\Phi_G^2(\mathbf{x}) - \langle \Phi_G^2 \rangle)$

INITIAL CONDITIONS: MATHS

Aim: Create non-Gaussian field

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + \Phi_{NG}(\mathbf{x})$$
full field Gaussian non-Gaussian part

Simplest case: local non-Gaussianity
$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{\mathrm{NL}}(\Phi_G^2(\mathbf{x}) - \langle \Phi_G^2 \rangle)$$

General case: arbitrary bispectrum B_{Φ}

$$\Phi_{NG}(\mathbf{k}) = \frac{f_{NL}}{2} \int \frac{d^3 \mathbf{k}' d^3 \mathbf{k}''}{(2\pi)^3} \delta_D(\mathbf{k} - \mathbf{k}' - \mathbf{k}'') W_B(k, k', k'') \Phi_G(\mathbf{k}') \Phi_G(\mathbf{k}'') \qquad \text{Wagner et al 2010}$$

$$W_B(k, k', k'') \equiv \frac{B_{\Phi}(k, k', k'')}{P_{\Phi}(k)P_{\Phi}(k') + P_{\Phi}(k)P_{\Phi}(k'') + P_{\Phi}(k')P_{\Phi}(k'')}$$
 (=2 in local case)

Symmetrisation required to preserve power spectrum

SPEED?

• Non-separable bispectrum kernel: $W_B(k, k', k'') = \frac{1}{k + k' + k''}$

$$\Rightarrow \Phi_{NG}(\mathbf{k}) \sim \int d^3 \mathbf{k}' d^3 \mathbf{k}'' \frac{1}{k + k' + k''} \Phi_G(\mathbf{k}') \Phi_G(\mathbf{k}'')$$
 (k" = -k-k')

SLOW: different integral over $\mathbf{k'}$ for every \mathbf{k} , i.e. $\sim N^2$ operations

$$N = \text{total} \# \text{ptcles} \sim 10^9$$

SPEED?

• Non-separable bispectrum kernel: $W_B(k, k', k'') = \frac{1}{k + k' + k''}$

$$\Rightarrow \Phi_{NG}(\mathbf{k}) \sim \int d^3 \mathbf{k}' d^3 \mathbf{k}'' \frac{1}{k + k' + k''} \Phi_G(\mathbf{k}') \Phi_G(\mathbf{k}'') \qquad (\mathbf{k''} = -\mathbf{k} - \mathbf{k}')$$

SLOW: different integral over \mathbf{k}' for every \mathbf{k} , i.e. $\sim N^2$ operations

$$N = \text{total} \# \text{ptcles} \sim 10^9$$

• Separable bispectrum kernel: $W_B(k, k', k'') = kk'k''$

$$\Rightarrow \Phi_{NG}(\mathbf{k}) \sim \int d^3 \mathbf{k}' d^3 \mathbf{k}'' k k' k'' \Phi_G(\mathbf{k}') \Phi_G(\mathbf{k}'')$$

$$= \mathbf{k} \left[\int d^3 \mathbf{k}' k' \Phi_G(\mathbf{k}') \right] \times \left[\int d^3 \mathbf{k}'' k'' \Phi_G(\mathbf{k}'') \right]$$

FAST: two 3D integrals, i.e. ~*N* operations

SPEED?

• Non-separable bispectrum kernel: $W_B(k, k', k'') = \frac{1}{k + k' + k''}$

 $(\mathbf{k''} = -\mathbf{k} - \mathbf{k'})$

perations

al # ptcles $\sim 10^9$

Separability = Efficiency

Separable ł

FAST: two 3D integrals, i.e. ~*N* operations

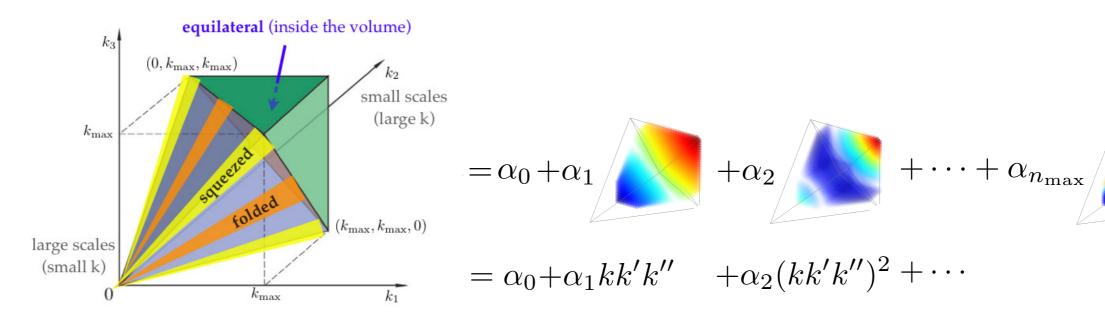
FAST INITIAL CONDITIONS

Fergusson, Regan, Shellard PRD 86, 063511 (2012), arXiv: 1008.1730 Regan, MS, Shellard, Fergusson PRD 86, 123524 (2012), arXiv:1108.3813

Need $\sim N^2$ operations in general, but only $\sim N$ operations if W_B was **separable**:

$$W_B(k, k', k'') = f_1(k)f_2(k')f_3(k'') + \text{ perms}$$

Expand W_B in separable basis functions to get $\sim N$ scaling for any^* bispectrum:



 $W_B(k,k',k'')$ on space of triangle configurations

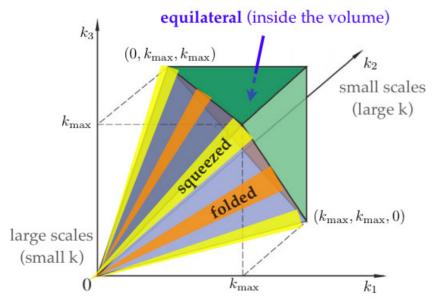
expansion in separable basis functions (decorrelate for convenience; around 100 basis functions represent all investigated bispectra with high accuracy)

^{*}Scoccimarro and Verde groups try to rewrite W_B analytically in separable form; this works sometimes, but not in general

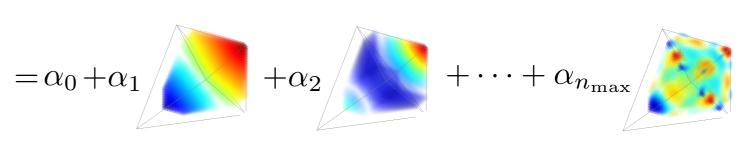
INITIAL CONDITIONS

Regan, MS, Shellard, Fergusson PRD 86, 123524 (2012), arXiv:1108.3813

- Fast and general non-Gaussian **initial conditions** for N-body simulations
 - Arbitrary (including non-separable) bispectra, diagonal-independent trispectra
 - This is the only method to simulate structure formation for general inflation models to date
 - Idea:



bispectrum drawn on space of triangle configurations



expansion in separable, uncorrelated basis functions (around 100 basis functions represent all investigated bispectra with high accuracy)

NON-GAUSSIAN N-BODY SIMS

MS, Regan, Shellard 1207.5678

- Application: Generate non-Gaussian density
 - Convert to initial particle positions and velocities by applying 2LPT to glass configuration or regular grid (spurious bispectrum at high z decays at low z)
 - Feed into Gadget3

Name	NG shape	$f_{ m NL}$	$L[\frac{\mathrm{Mpc}}{h}]$	N_p	z_i	$L_s[\frac{\mathrm{kpc}}{h}]$	N_r	glass
G512g			1600	512	49	156	3	yes
G512	_	_	1600	512	49	156	3	no
G_L^{512}	_	_	{400, 100}	512	49	$\{39, 9.8\}$	3	no
G768	_	_	2400	768	19	90	3	no
G1024	_	_	1875	1024	19	40	2	no
Loc10g	local	10	1600	512	49	156	3	yes
Loc10	local	10	1600	512	49	156	3	no
$\text{Loc}10_L^{512}$	local	10	$\{400, 100\}$	512	49	${39, 9.8}$	3	no
$Loc10^-$	local	-10	1600	512	49	156	3	no
Loc20	local	20	1600	512	49	156	3	no
Loc50	local	50	1600	512	49	156	3	no
Eq100g	equil	100	1600	512	49	156	3	yes
Eq100	equil	100	1600	512	49	156	3	no
$\text{Eq}100_L^{512}$	equil	100	$\{400, 100\}$	512	49	${39, 9.8}$	3	no
$Eq100^{-}$	equil	-100	1600	512	49	156	3	no
Orth100g	orth	100	1600	512	49	156	3	yes
Orth100	orth	100	1600	512	49	156	3	no
$Orth100_{400}^{512}$	orth	100	400	512	49	39	3	no
${\rm Orth}100^-$	orth	-100	1600	512	49	156	3	no
Flat10	flat	10	1600	512	49	156	3	no
$Flat 10^{512}_{400}$	flat	100	400	512	49	39	3	no

BISPECTRUM ESTIMATION

initial field with primordial non-Gaussianity

2LPT

initial particle positions

reconstructed bispectrum and $f_{
m NL}^B$

bispectrum estimator

late time density perturbation

BISPECTRUM ESTIMATION: MATHS

Fergusson, Shellard et al. 2009-2012 MS, Regan, Shellard 1207.5678

Likelihood for $f_{\rm NL}$ given a density perturbation $\delta_{\bf k}$

$$\mathcal{L} \propto \int \frac{d^{3}\mathbf{k}_{1}}{(2\pi)^{3}} \frac{d^{3}\mathbf{k}_{2}}{(2\pi)^{3}} \frac{d^{3}\mathbf{k}_{3}}{(2\pi)^{3}} \left[1 - \frac{1}{6} \underbrace{\langle \delta_{\mathbf{k}_{1}} \delta_{\mathbf{k}_{2}} \delta_{\mathbf{k}_{3}} \rangle}_{\propto f_{\mathrm{NL}} B_{\delta}} \frac{\partial}{\partial \delta_{\mathbf{k}_{1}}} \frac{\partial}{\partial \delta_{\mathbf{k}_{2}}} \frac{\partial}{\partial \delta_{\mathbf{k}_{3}}} + \cdots \right] \frac{1}{\sqrt{\det C}} \prod_{ij} e^{-\frac{1}{2} \delta_{\mathbf{k}_{i}}^{*} (C^{-1})_{ij} \delta_{\mathbf{k}_{j}}}$$

Maximise w.r.t. f_{NL} (given a theoretical bispectrum B_{δ}^{theo})

$$\hat{f}_{NL}^{B_{\delta}^{\text{theo}}} = \frac{1}{N_{f_{NL}}} \int \frac{d^3 \mathbf{k}_1}{(2\pi)^3} \frac{d^3 \mathbf{k}_2}{(2\pi)^3} \frac{d^3 \mathbf{k}_3}{(2\pi)^3} \frac{(2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_{\delta}^{\text{theo}}(k_1, k_2, k_3) \delta_{\mathbf{k}_1} \delta_{\mathbf{k}_2} \delta_{\mathbf{k}_3}}{P_{\delta}(k_1) P_{\delta}(k_2) P_{\delta}(k_3)}$$

Requires $\sim N^2$ operations in general, but only $\sim N$ operations if $B_{\delta}^{\rm theo}$ was separable

- \longrightarrow Measure amplitudes β_n^R of separable basis functions
- Combine them to reconstruct full bispectrum from the data:

$$\hat{\mathbf{B}}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = \sum_{n} \beta_n^R \sqrt{\frac{P_{\delta}(k_1) P_{\delta}(k_2) P_{\delta}(k_3)}{k_1 k_2 k_3}} R_n(k_1, k_2, k_3)$$

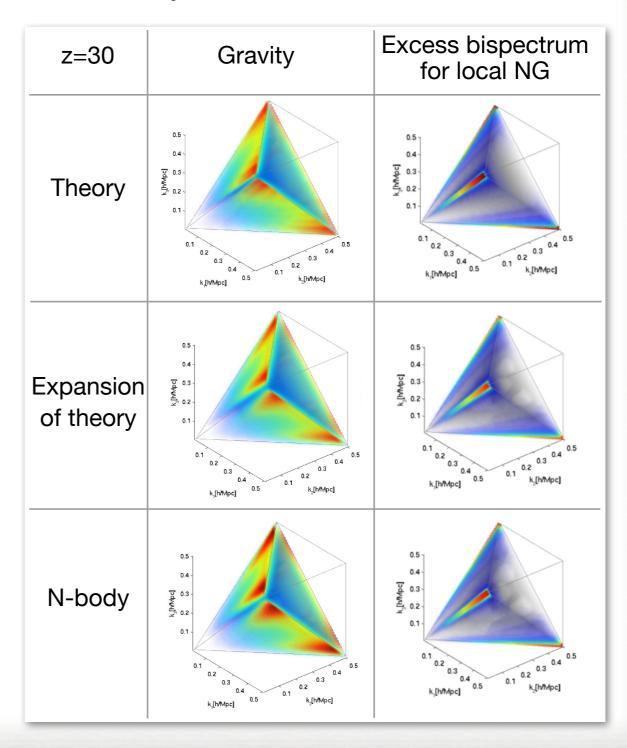
depends on data

where
$$\beta_n^R \equiv \sum_m \lambda_{nm} \beta_m^Q$$
, $\beta_m^Q \equiv \int d^3 \mathbf{x} M_r(\mathbf{x}) M_s(\mathbf{x}) M_t(\mathbf{x})$, $M_r(\mathbf{x}) \equiv \int \frac{d^3 \mathbf{k}}{(2\pi)^3} e^{i\mathbf{k}\mathbf{x}} \frac{q_r(k) \delta_{\mathbf{k}}^{\text{obs}}}{\sqrt{k P_{\delta}(k)}}$

BISPECTRUM ESTIMATION

MS, Regan, Shellard 1207.5678

- ▶ Fast and general **bispectrum estimator** for *N*-body simulations
 - Measure $\sim 100 \, f_{\rm NL}$ amplitudes of separable basis shapes, combine them to reconstruct the full bispectrum
 - Scales like 100xN instead of N^2 , where $N\sim10^9$ (speedup by factor $\sim10^7$)
 - Can estimate bispectrum whenever power spectrum is typically measured
 - Validated against PT at high z
 - Useful compression to ~100 numbers
 - Automatically includes all triangles
 - Loss of total *S*/*N* due to truncation of basis is only a few percent (could be improved with larger basis; for ~*N* basis functions the estimator would be exact)



CONSISTENCY CHECK

initial field with primordial non-Gaussianity

2LPT

initial particle positions

reconstructed bispectrum and $f_{
m NL}^B$

bispectrum estimator

late time density perturbation

CONSISTENCY CHECK

initial field with primordial non-Ga of nity

bispectrum estimator

reconstructed bispectrum and $f_{
m NL}^B$

2LPT

initial particle positions

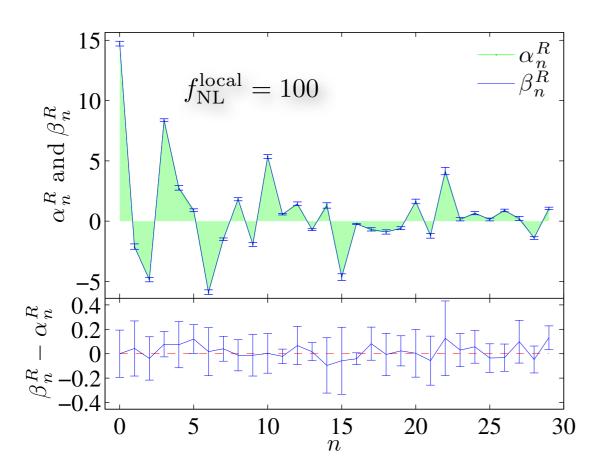
late time density perturbation

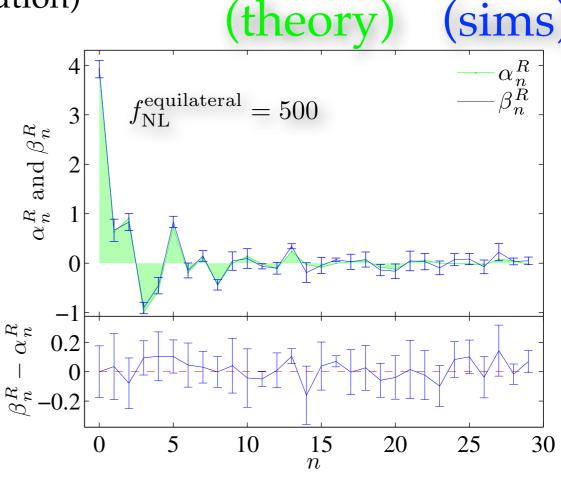
CONSISTENCY CHECK

Regan, MS, Shellard, Fergusson 1108.3813

Generate non-Gaussian field Φ and estimate its bispectrum, both with

separable mode expansion (no time evolution)





5 realisations with N=512 and $L=100~{\rm Mpc/h}$

more shapes and generalisation to trispectrum: 1108.3813

FULL RUN & RESULTS

initial field with primordial non-Gaussianity

2LPT

initial particle positions

reconstructed bispectrum and $f_{
m NL}^B$

bispectrum estimator

late time density perturbation

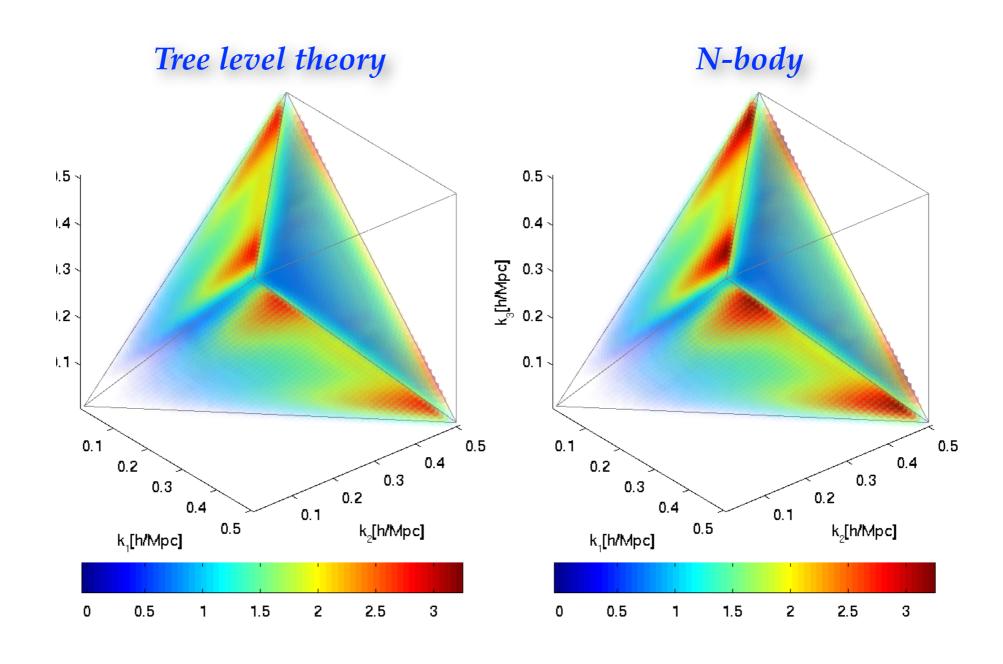
GAUSSIAN

SIMULATIONS

COMPARISON WITH TREE LEVEL

MS, Regan, Shellard 1207.5678

z = 30



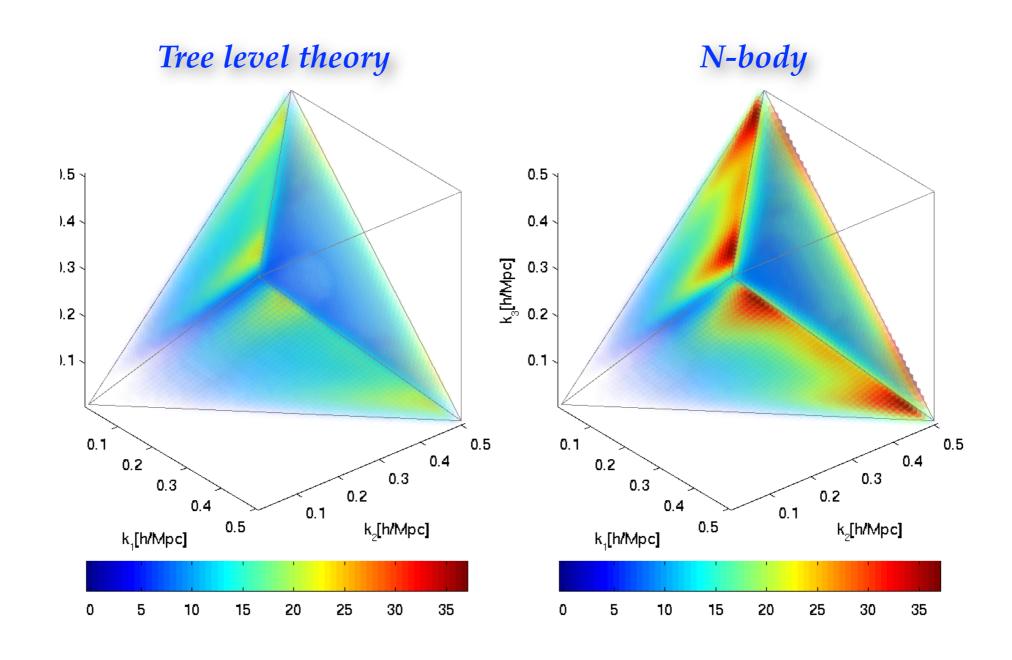
Plot S/N weighted bispectrum $\sqrt{k_1k_2k_3}B_{\delta}(k_1,k_2,k_3)/\sqrt{P_{\delta}(k_1)P_{\delta}(k_2)P_{\delta}(k_3)}$

3 realisations of 512³ particles in a L = 1600 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.004 - 0.5 h/Mpc

COMPARISON WITH TREE LEVEL

MS, Regan, Shellard 1207.5678

z=2



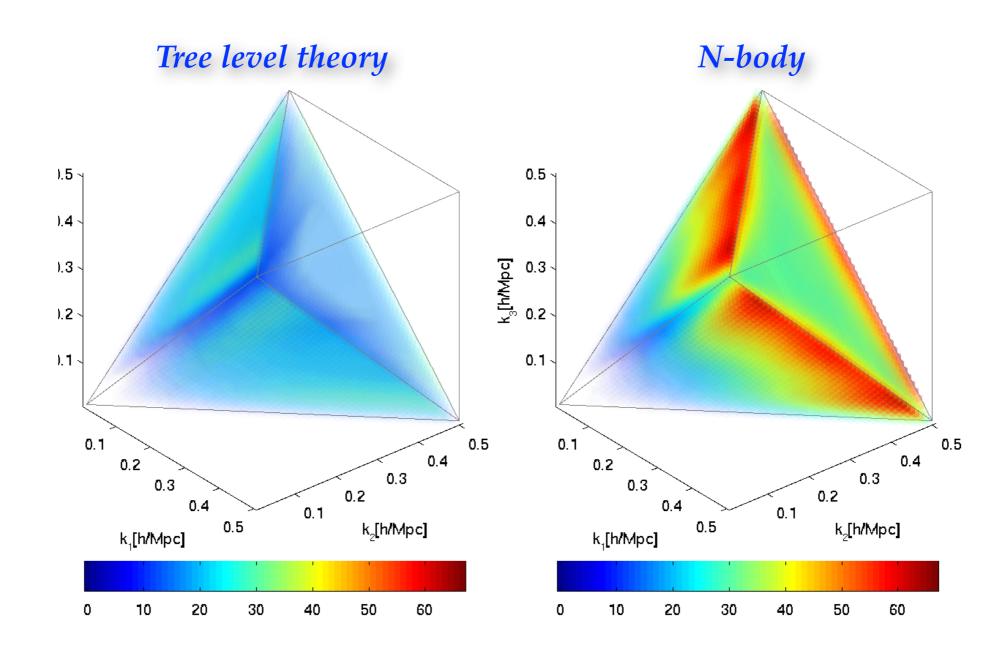
Plot S/N weighted bispectrum $\sqrt{k_1k_2k_3}B_{\delta}(k_1,k_2,k_3)/\sqrt{P_{\delta}(k_1)P_{\delta}(k_2)P_{\delta}(k_3)}$

3 realisations of 512³ particles in a L = 1600 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.004 - 0.5 h/Mpc

COMPARISON WITH TREE LEVEL

MS, Regan, Shellard 1207.5678

z=0

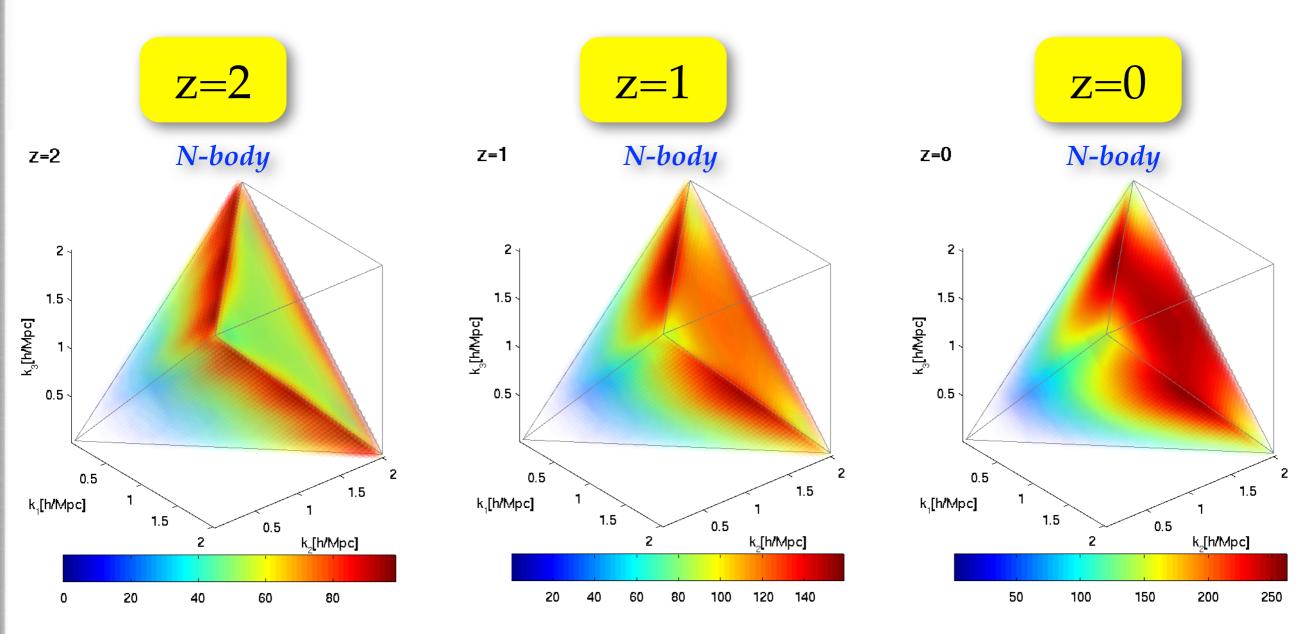


Plot S/N weighted bispectrum $\sqrt{k_1k_2k_3}B_{\delta}(k_1,k_2,k_3)/\sqrt{P_{\delta}(k_1)P_{\delta}(k_2)P_{\delta}(k_3)}$

3 realisations of 512³ particles in a L = 1600 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.004 - 0.5 h/Mpc

ON SMALL SCALES

MS, Regan, Shellard 1207.5678



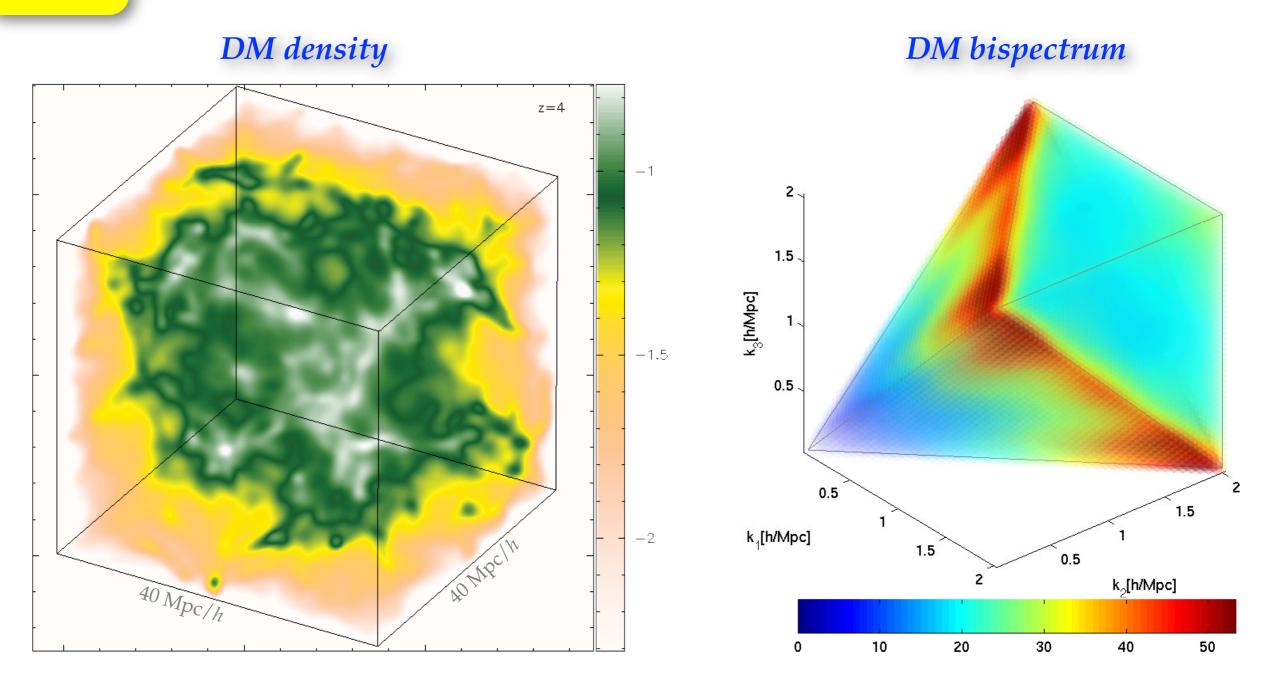
Plot S/N weighted bispectrum $\sqrt{k_1k_2k_3}B_{\delta}(k_1,k_2,k_3)/\sqrt{P_{\delta}(k_1)P_{\delta}(k_2)P_{\delta}(k_3)}$

3 realisations of 512³ particles in a L = 400 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.016 - 2.0 h/Mpc

COMPARISON WITH DARK MATTER

z=4

MS, Regan, Shellard 1207.5678

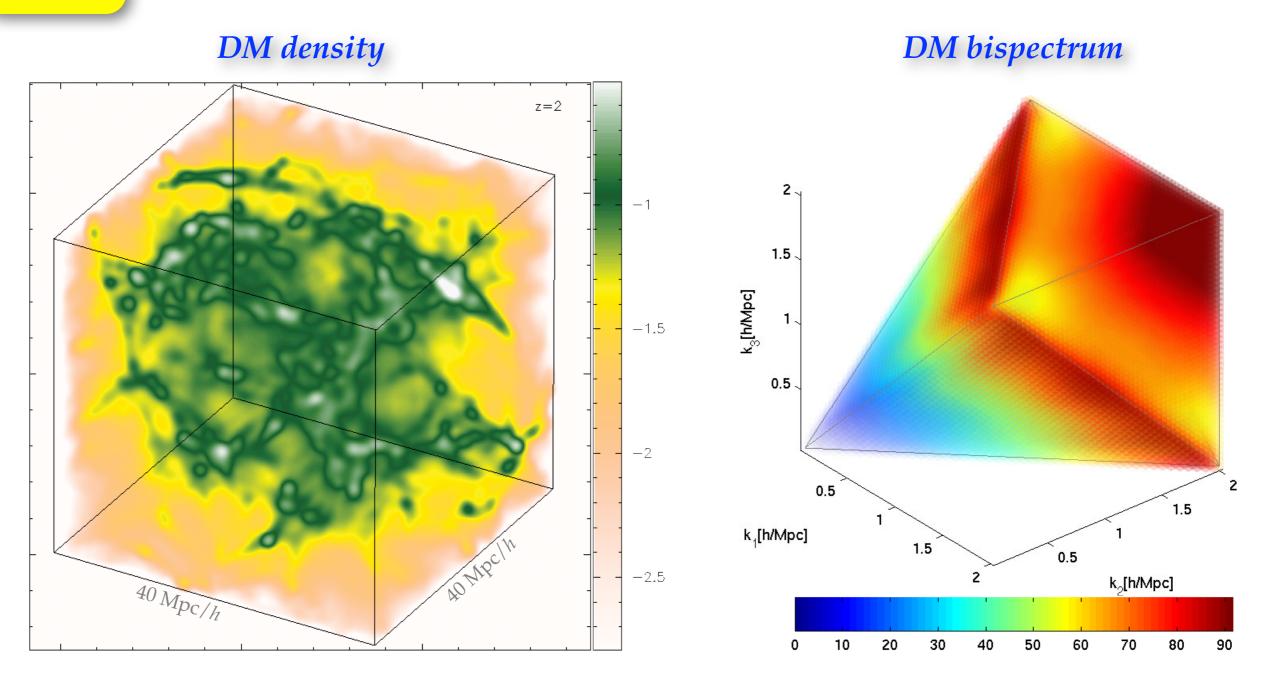


Plot DM density in $(40 \text{ Mpc}/h)^3$ subbox and bispectrum signal $\sqrt{k_1 k_2 k_3} B_\delta(k_1, k_2, k_3) / \sqrt{P_\delta(k_1) P_\delta(k_2)} P_\delta(k_3)$ 512³ particles in a L = 400 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.016 - 2 h/Mpc

COMPARISON WITH DARK MATTER

z=2

MS, Regan, Shellard 1207.5678

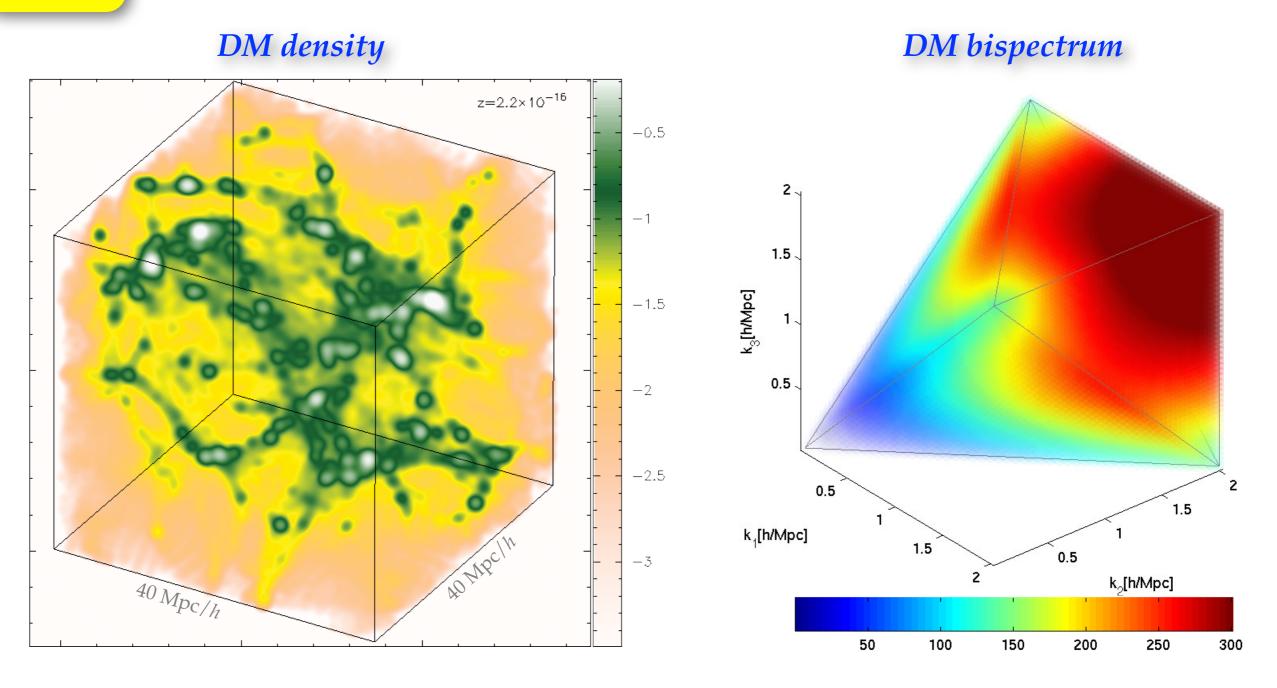


Plot DM density in $(40 \text{ Mpc}/h)^3$ subbox and bispectrum signal $\sqrt{k_1 k_2 k_3} B_\delta(k_1, k_2, k_3) / \sqrt{P_\delta(k_1) P_\delta(k_2)} P_\delta(k_3)$ 5123 particles in a L = 400 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.016 - 2 h / Mpc

COMPARISON WITH DARK MATTER

z=0

MS, Regan, Shellard 1207.5678



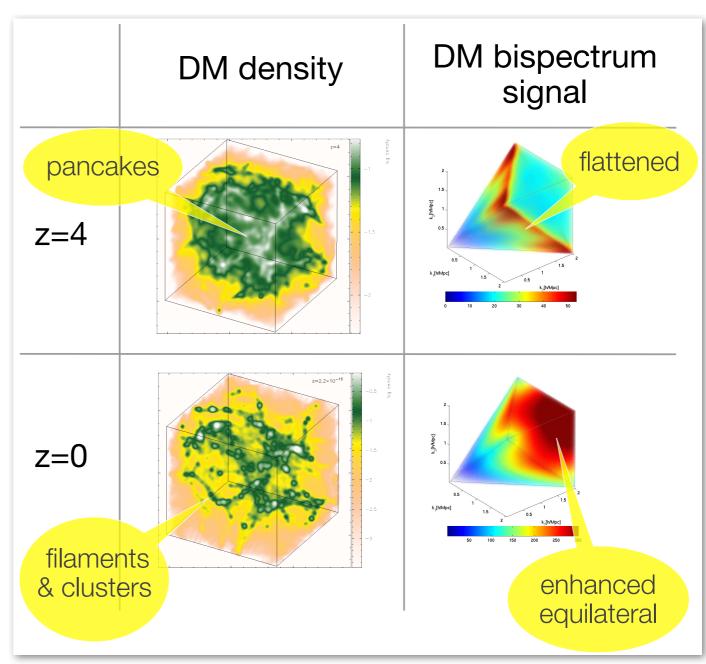
Plot DM density in $(40 \text{ Mpc}/h)^3$ subbox and bispectrum signal $\sqrt{k_1 k_2 k_3} B_\delta(k_1, k_2, k_3) / \sqrt{P_\delta(k_1) P_\delta(k_2)} P_\delta(k_3)$ 512³ particles in a L = 400 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.016 - 2 h/Mpc

SUMMARY

MS, Regan, Shellard 1207.5678

Summary Gaussian N-body simulations

- Measured gravitational DM bispectrum for all triangles down to $k=2h\text{Mpc}^{-1}$
- Non-linearities mainly enhance 'constant' 1-halo bispectrum
- Bispectrum characterises 3d DM structures like pancakes, filaments, clusters
- Self-similarity
 (constant contribution appears towards late times at fixed length scale, and towards small scales at fixed time)

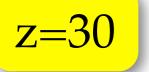


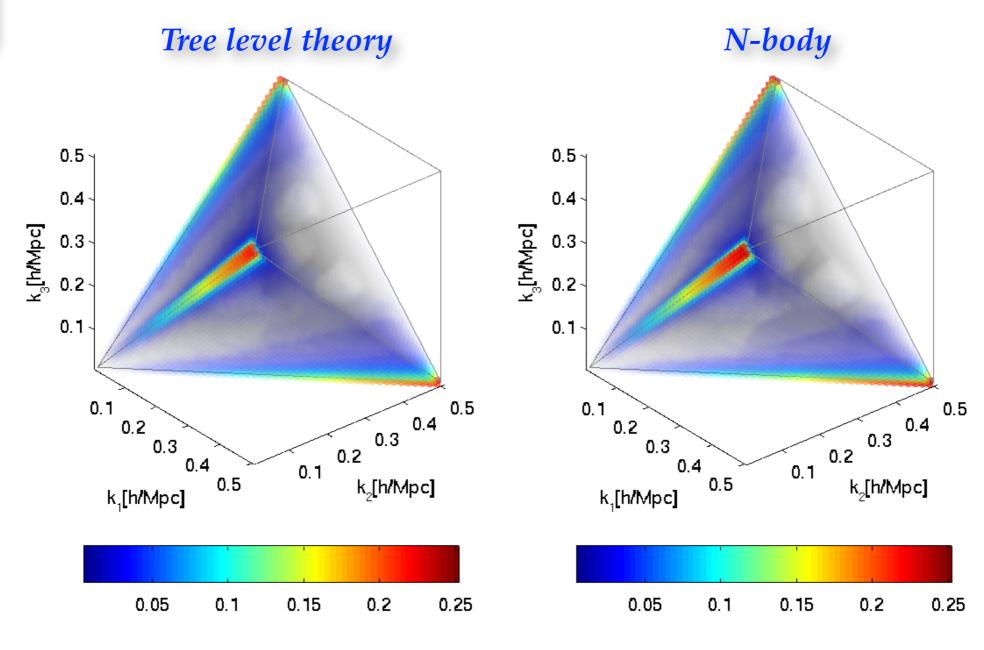
NON-GAUSSIAN

SIMULATIONS

LOCAL NON-GAUSSIAN SIMS

MS, Regan, Shellard 1207.5678



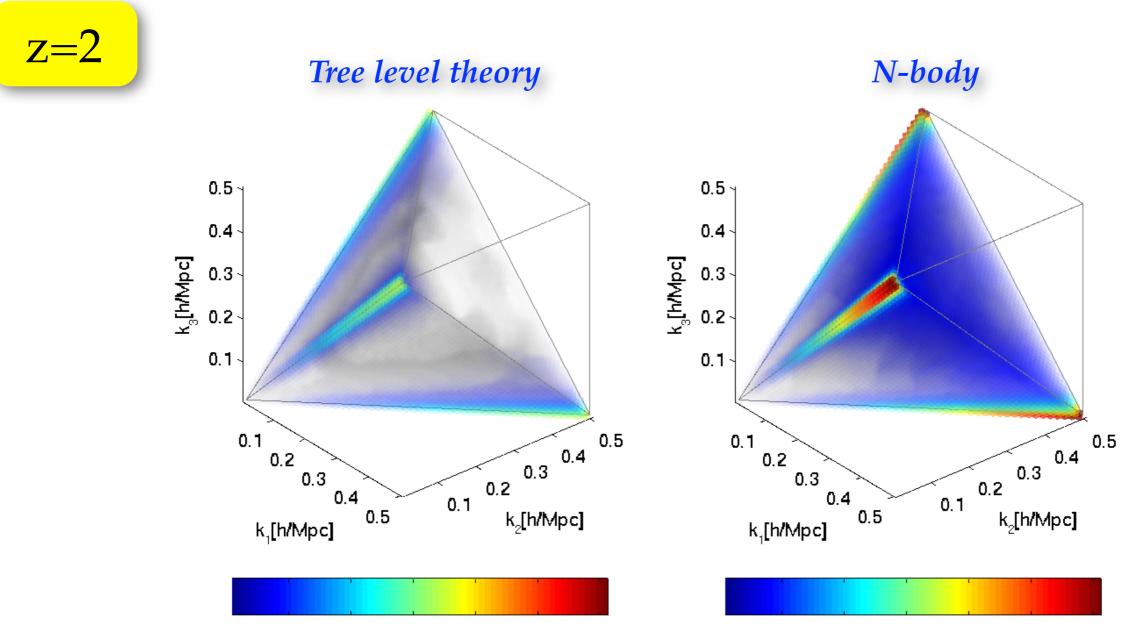


Plot S/N weighted **excess** bispectrum $\sqrt{k_1k_2k_3}B_{\delta}(k_1,k_2,k_3)/\sqrt{P_{\delta}(k_1)P_{\delta}(k_2)P_{\delta}(k_3)}$

3 realisations of 512³ particles in a L = 1600 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.004-0.5 h/Mpc, $f_{\text{NL}} = 10$

LOCAL NON-GAUSSIAN SIMS

MS, Regan, Shellard 1207.5678



Plot S/N weighted **excess** bispectrum $\sqrt{k_1k_2k_3}B_{\delta}(k_1,k_2,k_3)/\sqrt{P_{\delta}(k_1)P_{\delta}(k_2)P_{\delta}(k_3)}$

0.25

0.3

0.2

0.15

0.05

0.1

3 realisations of 512³ particles in a L = 1600 Mpc/h box with $z_{\text{init}} = 49$ and k = 0.004-0.5 h/Mpc, $f_{\text{NL}} = 10$

0.05

0.1

0.2

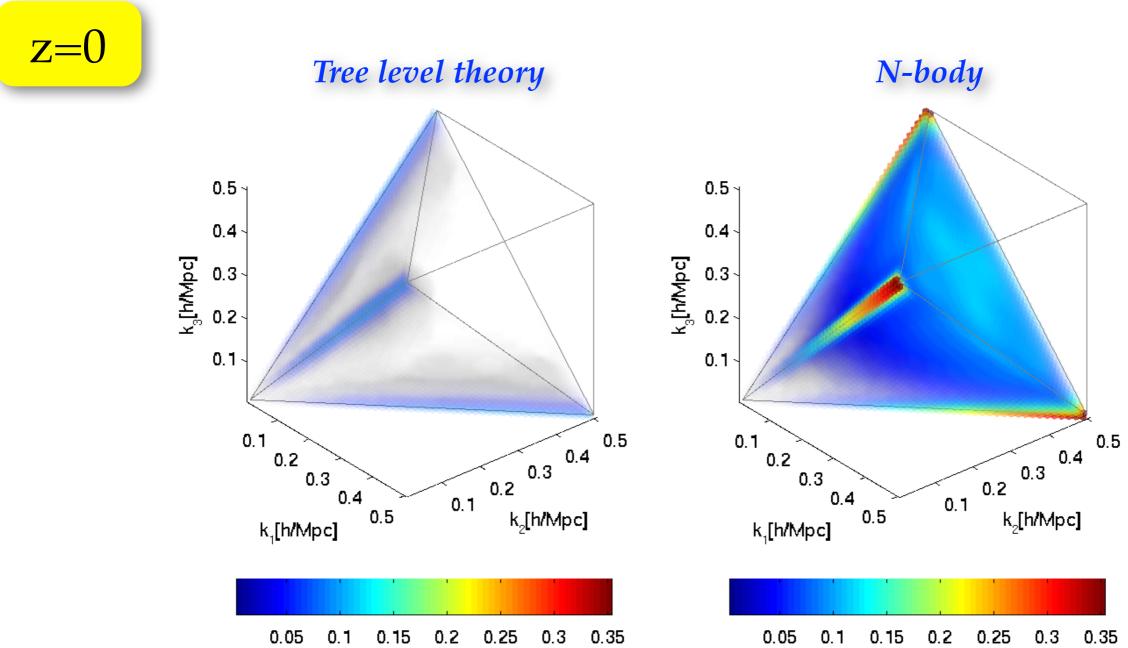
0.25

0.3

0.15

LOCAL NON-GAUSSIAN SIMS

MS, Regan, Shellard 1207.5678

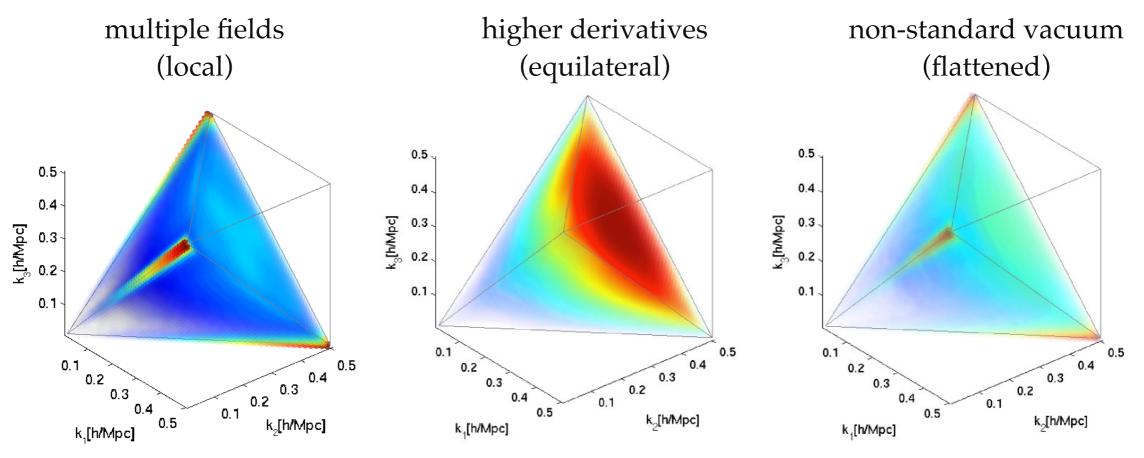


Plot S/N weighted **excess** bispectrum $\sqrt{k_1k_2k_3}B_{\delta}(k_1,k_2,k_3)/\sqrt{P_{\delta}(k_1)P_{\delta}(k_2)P_{\delta}(k_3)}$ 3 realisations of 512³ particles in a L=1600 Mpc/h box with $z_{\text{init}}=49$ and k=0.004-0.5 h/Mpc, $f_{\text{NL}}=10$

OTHER SHAPES

MS, Regan, Shellard 1207.5678

Excess DM bispectra for other non-Gaussian initial conditions



 $z=0, k_{\text{max}}=0.5h\text{Mpc}^{-1}, 512^3 \text{ particles}$

Non-linear regime:

- Tree level shape is enhanced by non-linear power spectrum
- Additional ~constant contribution to bispectrum signal
- Quantitative characterisation with cumulative *S*/*N* and 3d shape correlations in 1207.5678

SIMILARITY OF SHAPES

Babich et al. 2004, Fergusson, Regan, Shellard 2010

Introduce scalar product $\langle \cdot, \cdot \rangle_{\mathrm{est}}$, shape correlation $\mathcal C$ and norm ||B||

$$\langle B_i, B_j \rangle_{\text{est}} \equiv \frac{V}{\pi} \int_{\mathcal{V}_B} dk_1 dk_2 dk_3 \frac{k_1 k_2 k_3 B_i(k_1, k_2, k_3) B_j(k_1, k_2, k_3)}{P_{\delta}(k_1) P_{\delta}(k_2) P_{\delta}(k_3)}$$

$$C(B_i, B_j) \equiv \frac{\langle B_i, B_j \rangle_{\text{est}}}{\sqrt{\langle B_i, B_i \rangle_{\text{est}} \langle B_j, B_j \rangle_{\text{est}}}} \in [-1, 1]$$

if $|\mathcal{C}(B_1, B_2)| \ll 1$ then estimator for B_1 cannot find any B_2 and vice versa

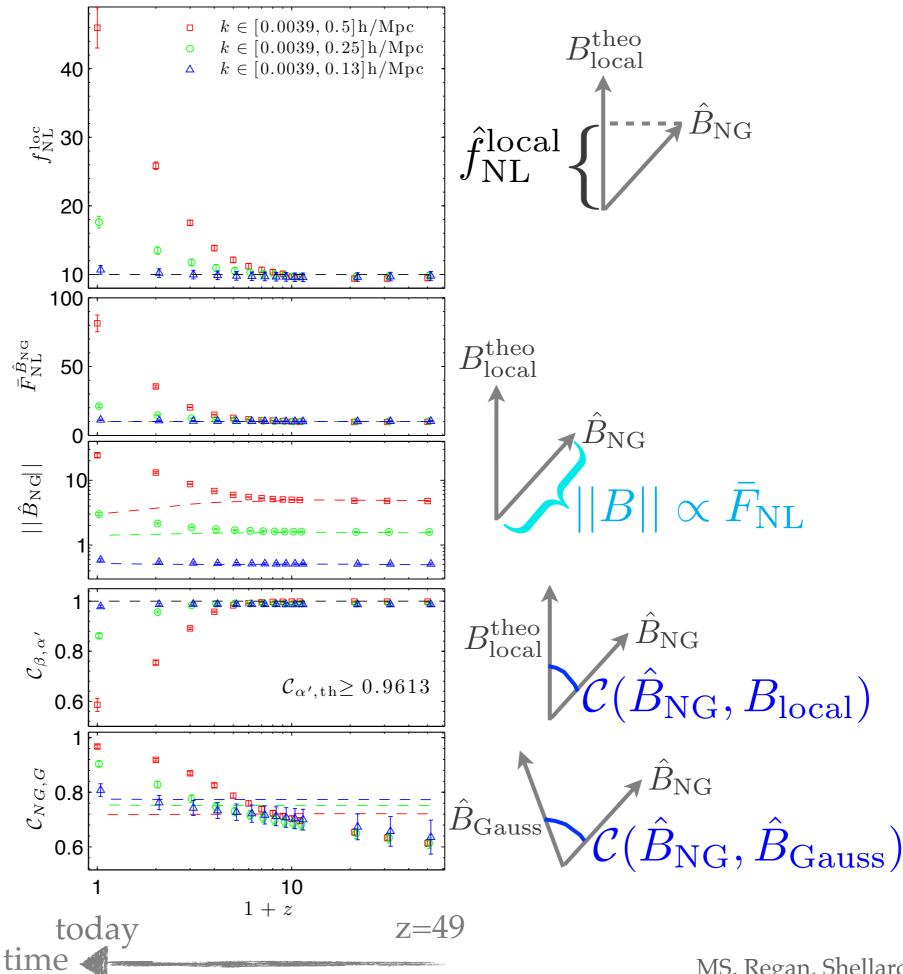
$$||B|| \equiv \sqrt{\langle B, B \rangle}_{\text{est}}$$
 total integrated S/N

$$\Rightarrow \langle \hat{f}_{\mathrm{NL}}^{B^{\mathrm{theo}}} \rangle = \mathcal{C}(B_{\delta}^{\mathrm{data}}, B_{\delta}^{\mathrm{theo}}) \frac{||B_{\delta}^{\mathrm{data}}||}{||B_{\delta}^{\mathrm{theo}}||}$$

projection of
data on theory

NG initial conditions with $f_{\rm NL}^{\rm local} = 10$

□ $k \in [0.0039, 0.5] \,h/Mpc$ ○ $k \in [0.0039, 0.25] \,h/Mpc$ △ $k \in [0.0039, 0.13] \,h/Mpc$

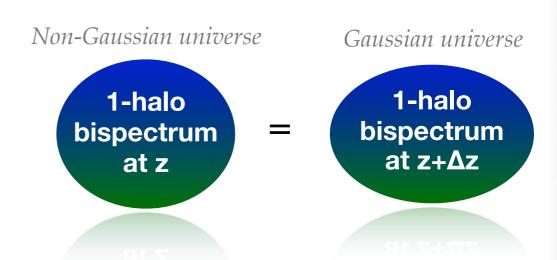


TIME SHIFT MODEL

MS, Regan, Shellard 1207.5678

▶ Time shift model

- Non-Gaussian universe evolves slightly faster (or slower) than Gaussian universe
- Halos form earlier (later) in presence of primordial non-Gaussianity
- Primordial non-Gaussianity gives growth of the 1-halo bispectrum a 'headstart' (or delay)



• Motivates simple form of non-Gaussian excess bispectrum:

$$B_{\delta}^{\text{NG}} = \underbrace{\sqrt{\frac{P_{\delta}^{\text{NL}}(k_1)P_{\delta}^{\text{NL}}(k_2)P_{\delta}^{\text{NL}}(k_3)}{P_{\Phi}(k_1)P_{\Phi}(k_2)P_{\Phi}(k_3)}}} B_{\Phi}(k_1, k_2, k_3) + \underbrace{c\Delta z \partial_z [D^{n_h}(z)](k_1 + k_2 + k_3)^{\nu}}_{\text{time shifted 1-halo term}}$$

FITTING FORMULAE

MS, Regan, Shellard 1207.5678

- ▶ Simple **fitting formulae** for grav. and primordial DM bispectrum **shapes**
 - Valid at $0 \le z \le 20$, $k \le 2h \text{Mpc}^{-1}$ 3d shape correlation with measured shapes is $\ge 94.4\%$ at $0 \le z \le 20$ and $\ge 98\%$ at z=0 ($\ge 99.8\%$ for gravity at $0 \le z \le 20$)
 - Only ~3 free parameters per inflation model (local, equilateral, flattened, [orthogonal])

$$B_{\delta}^{\text{NG}} = \underbrace{\sqrt{\frac{P_{\delta}^{\text{NL}}(k_1)P_{\delta}^{\text{NL}}(k_2)P_{\delta}^{\text{NL}}(k_3)}{P_{\Phi}(k_1)P_{\Phi}(k_2)P_{\Phi}(k_3)}}} B_{\Phi}(k_1, k_2, k_3) + \underbrace{c\Delta z \partial_z [D^{n_h}(z)](k_1 + k_2 + k_3)^{\nu}}_{\text{time shifted 1-halo term}}$$
time shifted 1-halo term

Quality of fit:

Simulation	$L\left[\frac{\mathrm{Mpc}}{\mathrm{h}}\right]$	$c_{1,2}$	$n_h^{(\text{prim})}$	all z	z=0
G512g	1600	4.1×10^{6}	7	99.8%	99.8%
Loc10	1600	2×10^3	6	99.7%	99.8%
Eq100	1600	8.6×10^{2}	6	97.9%	99.4%
Flat10	1600	1.2×10^4	6	98.8%	98.9%
G_{400}^{512}	400	1.0×10^7	8	99.8%	99.8%
$Loc10^{512}_{400}$	400	$2 \times 10^3 dD/da$	7	98.2%	99.0%
$Eq100_{400}^{512}$	400	$8.6 \times 10^2 dD/da$	7	94.4%	97.9%
$Flat 10^{512}_{400}$	400	$1.2 \times 10^4 dD/da$	7	97.7%	99.1%
Orth 100_{400}^{512}	400	-2.6×10^2	6.5	97.3%	98.9%

Overall amplitude needs to be rescaled by (poorly understood) timedependent prefactor; extends Gil-Marin *et al* formula to smaller scales and NG ICs

CONCLUSIONS

Conclusions

- ▶ Efficient and general non-Gaussian N-body initial conditions
- ▶ Fast estimation of full bispectrum
 - ☑ new standard diagnostic alongside power spectrum
- ▶ Tracked time evolution of the DM bispectrum in a large suite of non-Gaussian N-body simulations
- ▶ Time shift model for effect of primordial non-Gaussianity
- ▶ New fitting formulae for gravitational and primordial DM bispectra

See <u>1108.3813</u> (initial conditions) <u>1207.5678</u> (rest)

PART II: JOINT ANALYSIS OF CMB TEMPERATURE AND LENSING-RECONSTRUCTION POWER SPECTRA

arXiv:1308.0286 (PRD 88 063012)

Collaborators

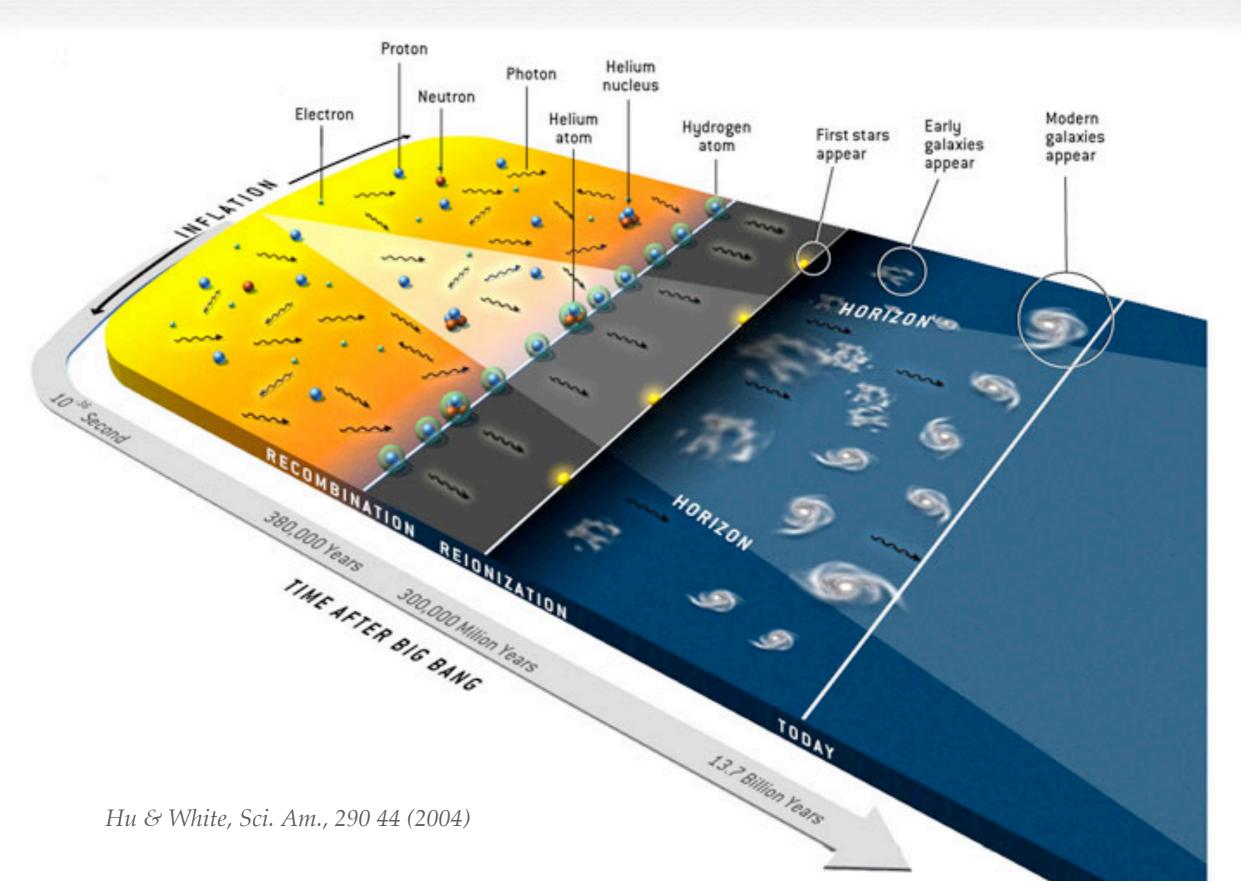
Anthony Challinor (IoA/DAMTP Cambridge)

Duncan Hanson (McGill)

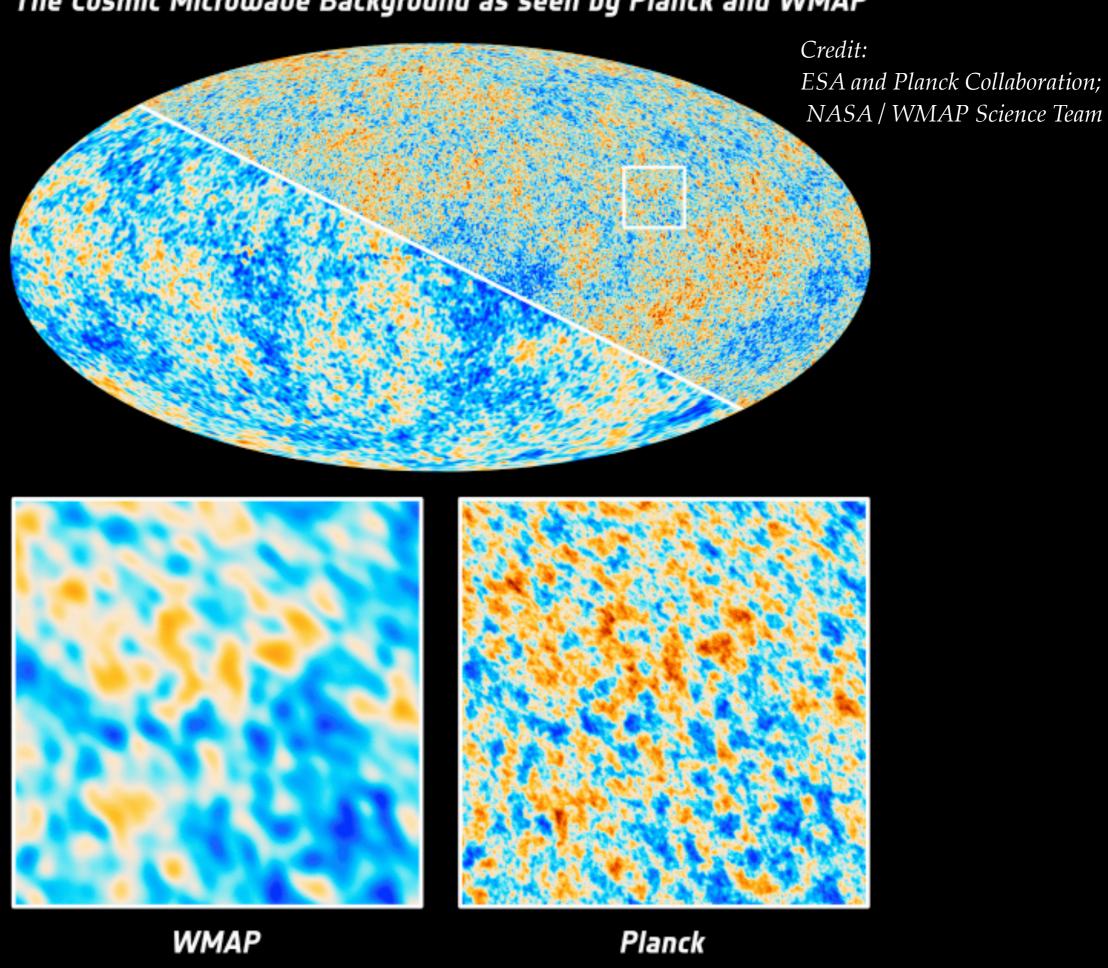
Antony Lewis (Sussex)

Berkeley 22 Oct 2013

THE COSMIC MICROWAVE BACKGROUND (CMB) BASICS



The Cosmic Microwave Background as seen by Planck and WMAP



Credit: Planck Chromoscope

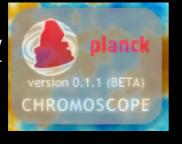
http://astrog80.astro.cf.ac.uk/

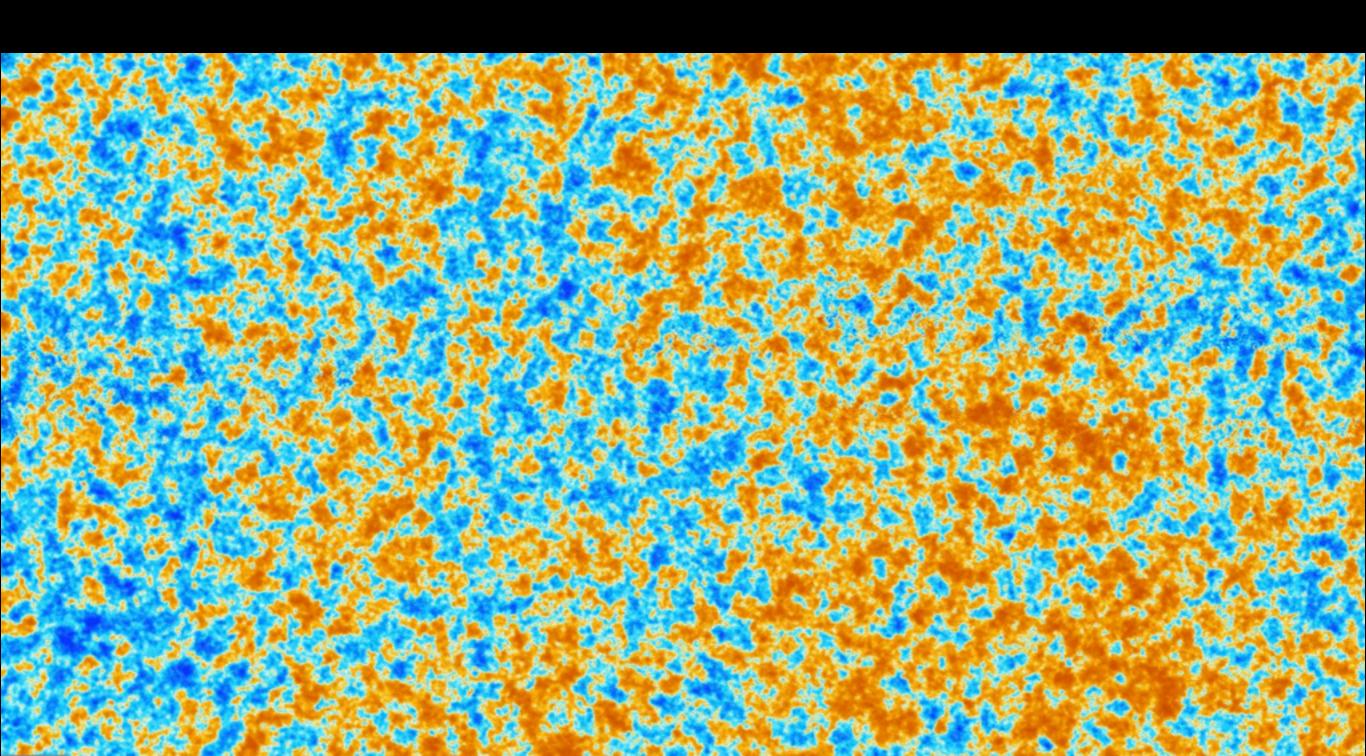
Planck/Chromoscope/

Chris North, Stuart Lowe

ESA/Planck Collaboration;

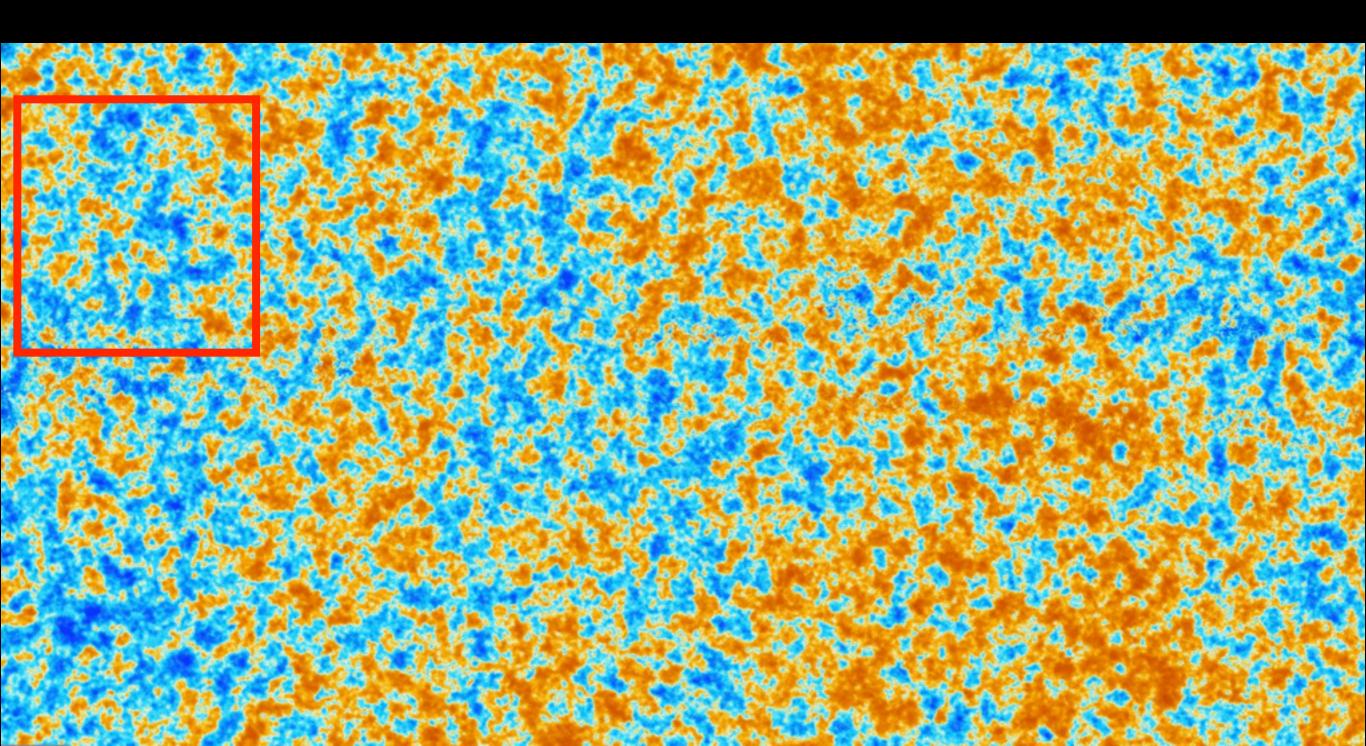
Paul Shellard

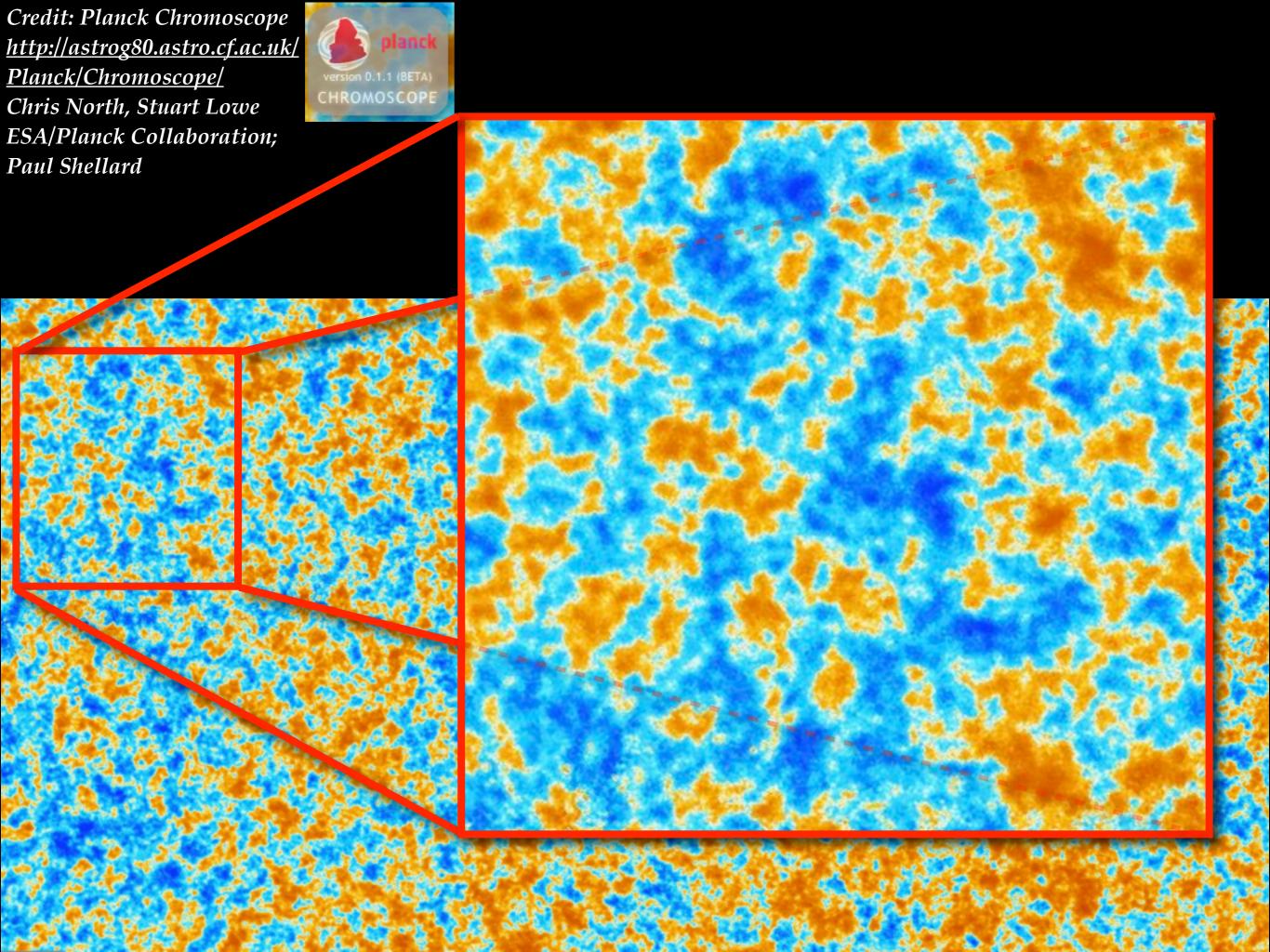


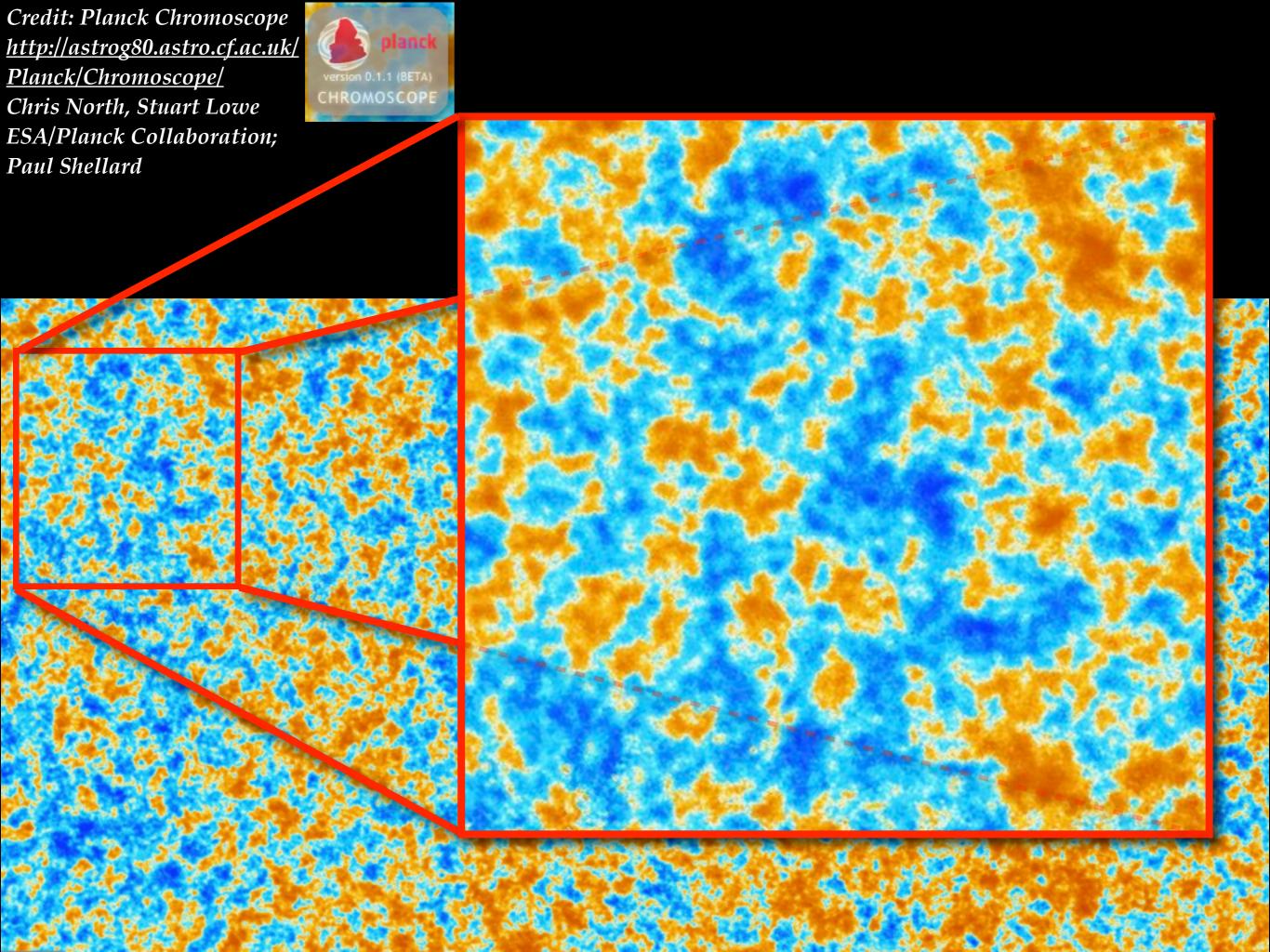


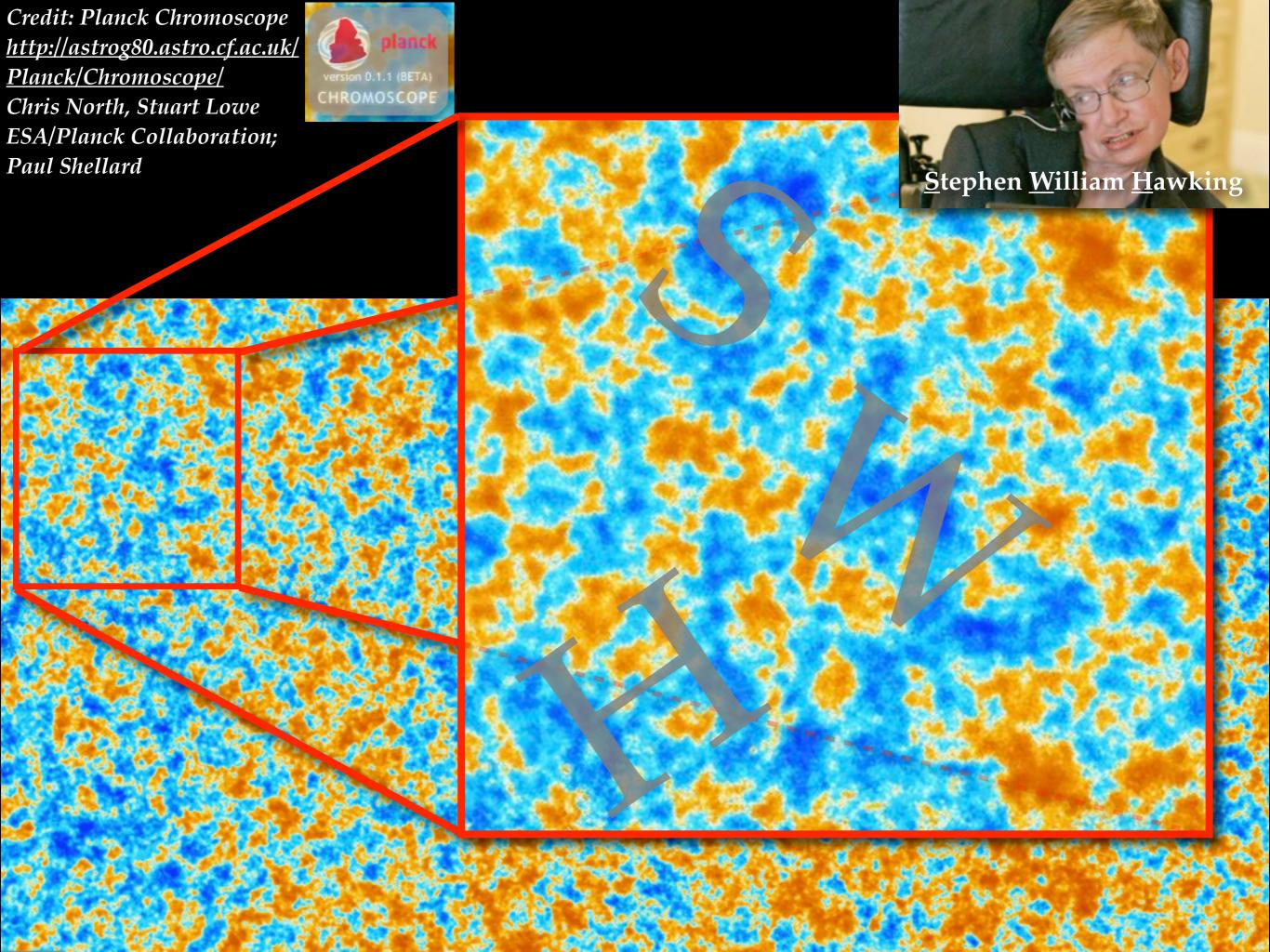
Credit: Planck Chromoscope

http://astrog80.astro.cf.ac.uk/
Planck/Chromoscope/
Chris North, Stuart Lowe
ESA/Planck Collaboration;
Paul Shellard



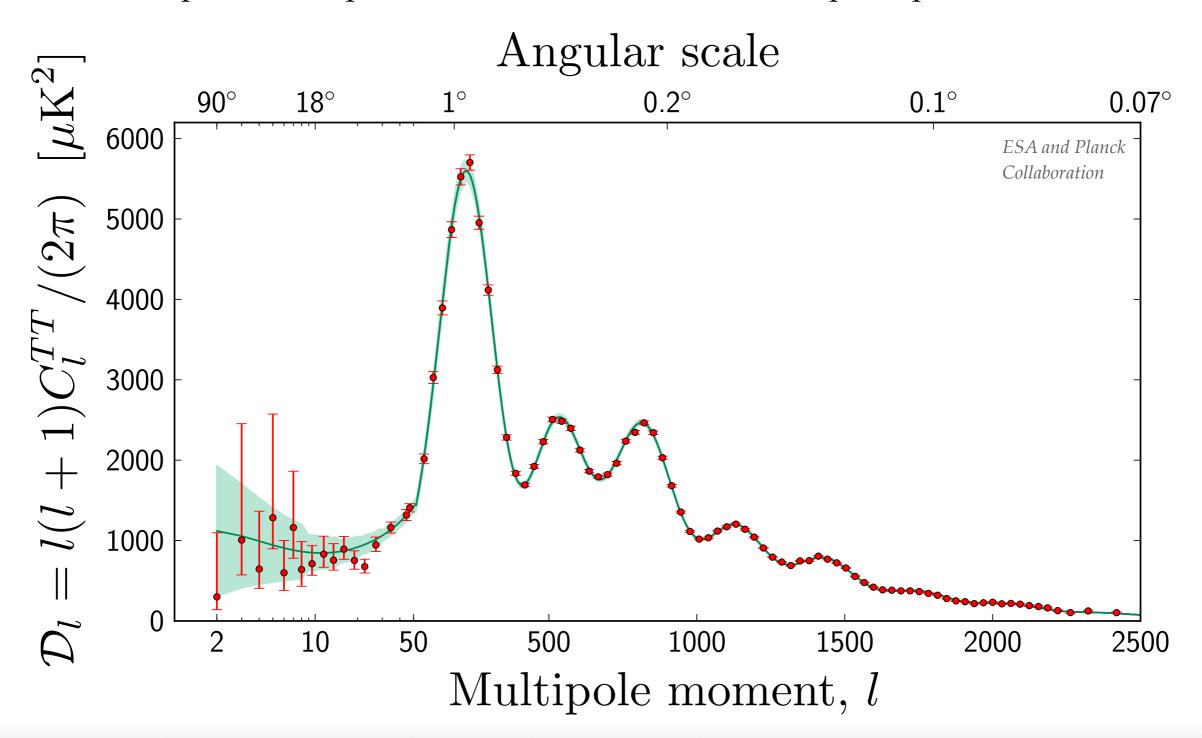






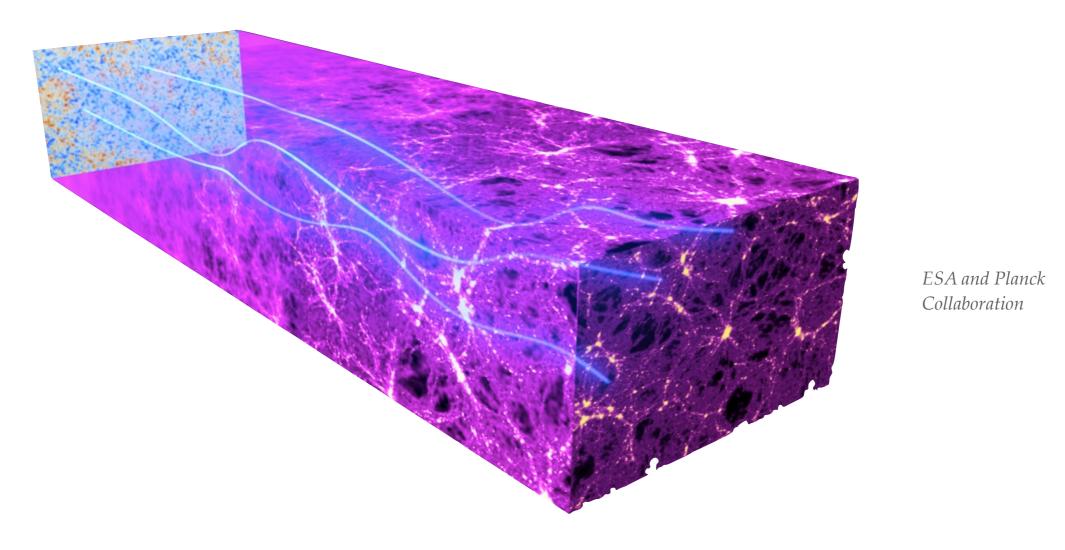
THE COSMIC MICROWAVE BACKGROUND (CMB) BASICS

• Power spectrum (2-point correlation function in multipole space)



CMB LENSING BASICS

 CMB photons are deflected by the inhomogeneous distribution of DM along the line of sight:



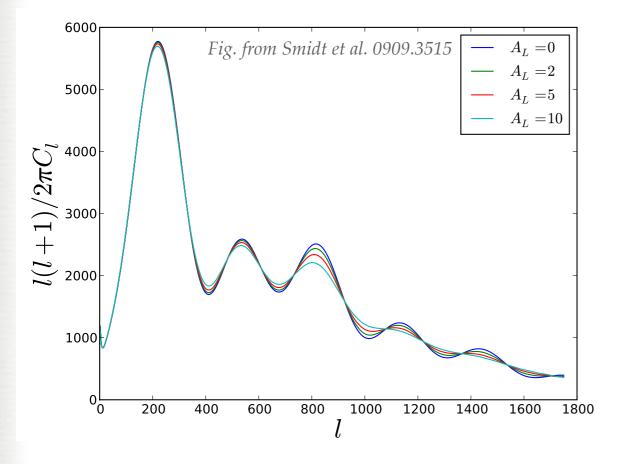
• Deflection = gradient of **lensing potential** ϕ (integral over matter perturbations along the line of sight)

CMB LENSING EFFECTS OF LENSING ON THE CMB

(a) Smoothing CMB 2-point function

Acoustic peaks/troughs are smoothed out by lensing

(since lensed $C^{\tilde{T}\tilde{T}}$ = convolution of unlensed C^{TT} and $C^{\phi\phi}$)



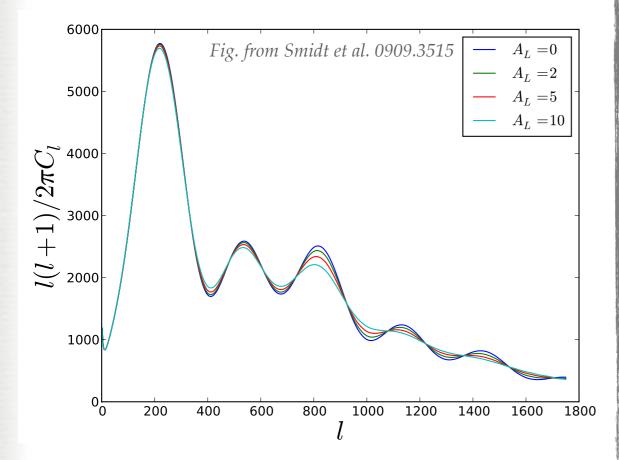
CMB LENSING

EFFECTS OF LENSING ON THE CMB

(a) Smoothing CMB 2-point function

Acoustic peaks/troughs are smoothed out by lensing

(since lensed $C^{\tilde{T}\tilde{T}}$ = convolution of unlensed C^{TT} and $C^{\phi\phi}$)



(b) Non-zero CMB 4-point function

For fixed realisation of lenses, the lensed temperature fluctuations are anisotropic

™ Mode coupling (off-diagonal covariance)

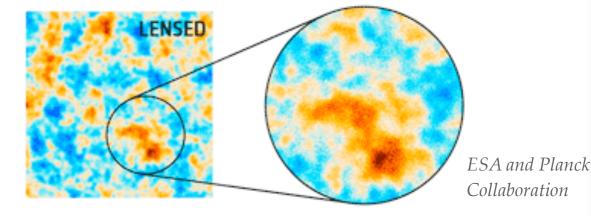
$$\langle \tilde{T}(\mathbf{l} + \mathbf{L}) \tilde{T}^*(\mathbf{l}) \rangle_{\text{CMB}} \propto \phi(\mathbf{L})$$

ightharpoonup Reconstruct lenses from lensed \tilde{T}

$$\hat{\phi}_{\rm rec}(\mathbf{L}) \propto \int_{\mathbf{l}} \tilde{T}(\mathbf{l}) \tilde{T}^*(\mathbf{l} - \mathbf{L}) \times \text{weight}$$

 \longrightarrow Get lensing power from \tilde{T} trispectrum*

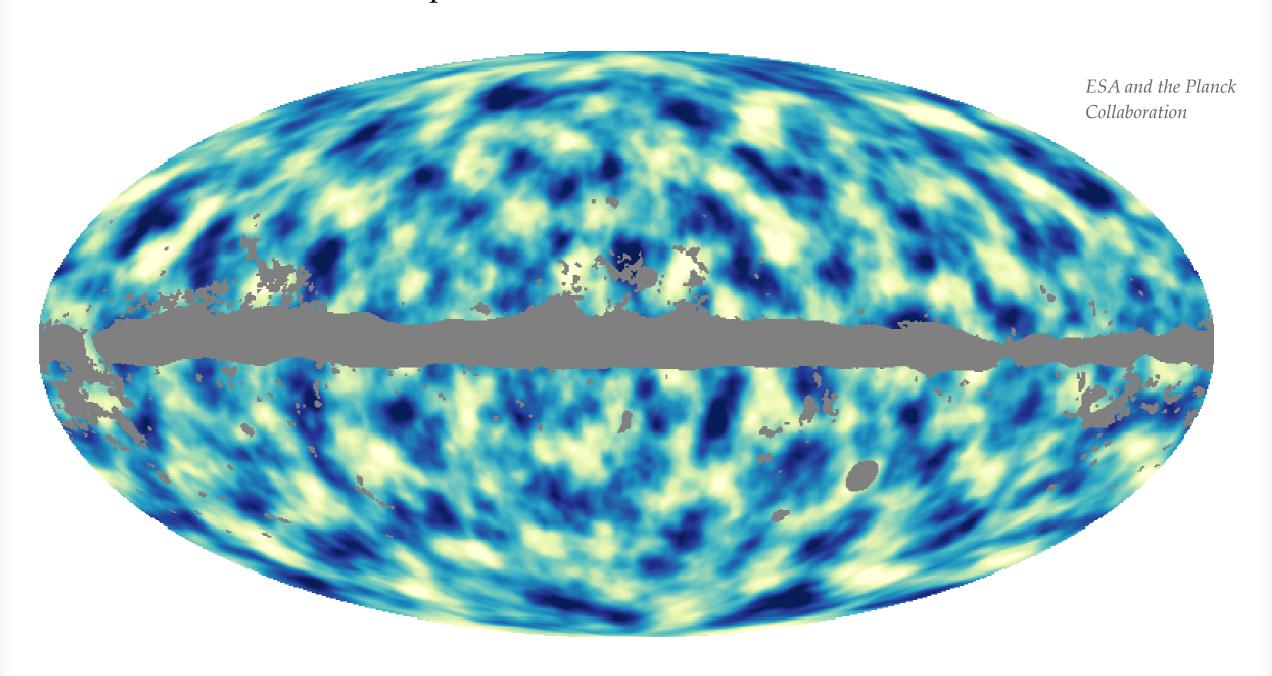
$$\hat{C}_{L}^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}} \propto \int_{\mathbf{l},\mathbf{l}'} \tilde{T}(\mathbf{l}) \tilde{T}^*(\mathbf{l} - \mathbf{L}) \tilde{T}(-\mathbf{l}') \tilde{T}^*(\mathbf{L} - \mathbf{l}')$$



^{*} All quadrilaterals whose diagonal has length *L*

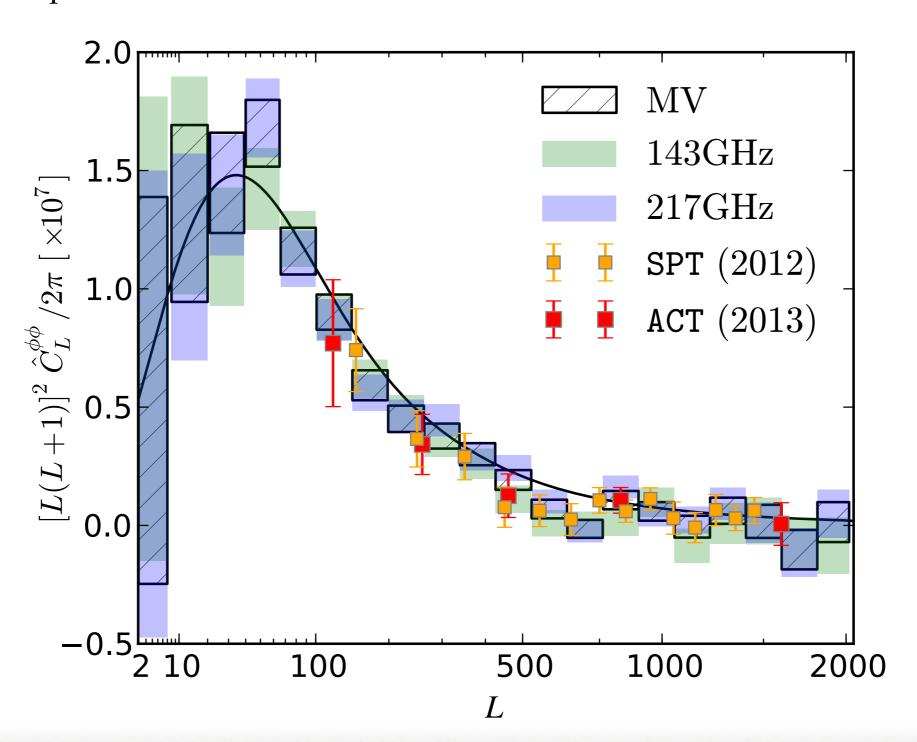
CMB LENSING PLANCK RECONSTRUCTION

Reconstructed mass map



CMB LENSING PLANCK RECONSTRUCTION

Power spectrum of the deflection field



ESA and the Planck Collaboration

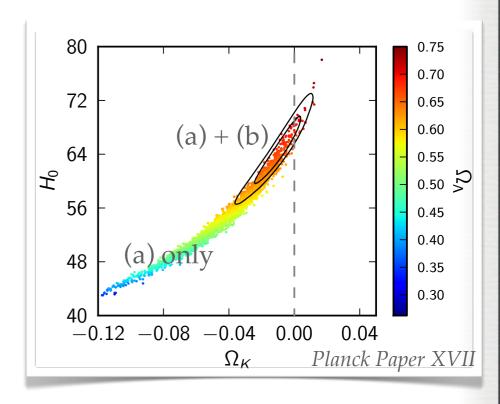
CMB LENSING MOTIVATION

Why do we care?

- Probe late time DM distribution to break degeneracies of primary CMB, or get bias
- Both (a) and (b) detected at many- σ level (ACT, SPT, *Planck*; soon ACTPol, SPTpol)

How do CMB experiments deal with lensing?

- (a) Smoothed $C^{\tilde{T}\tilde{T}}$ automatically included by using *lensed* power spectrum
- (b) Reconstruction $\hat{\phi}_{rec}$ can be added, e.g. for *Planck*:
- Reduction of errors on Ω_K and Ω_Λ by factor ~2 (evidence for flatness and DE from CMB alone*)
- Constraint on τ without WMAP polarization
- Neutrino masses: curious preference for large m_{ν}
- Consistency with $z\sim1100$ CMB physics seen by *Planck*



CMB LENSING MOTIVATION

Why do we care?

- Probe late time DM distribution to break degeneracies of primary CMB, or get bias
- Both (a) and (b) detected at many- σ level (ACT, SPT, *Planck*; soon ACTPol, SPTpol)

How do CMB experiments deal with lensing?

- (a) Smoothed $C^{\tilde{T}\tilde{T}}$ automatically included by using *lensed* power spectrum
- (b) Reconstruction $\hat{\phi}_{rec}$ can be added, e.g. for *Planck*:
- Reduction of arrows on Oward O. b.

 (evic Requires joint likelihood for $\hat{C}^{\tilde{T}\tilde{T}}$ and $\hat{C}^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}}$
- Cons

Neu

- Non-trivial because derived from same CMB map
- Cons Need $\operatorname{cov}(\hat{C}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}^{\tilde{T}\tilde{T}})$

. Paper XVII

0.70

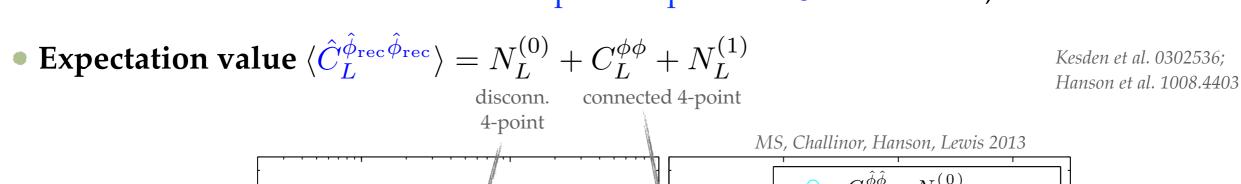
0.50

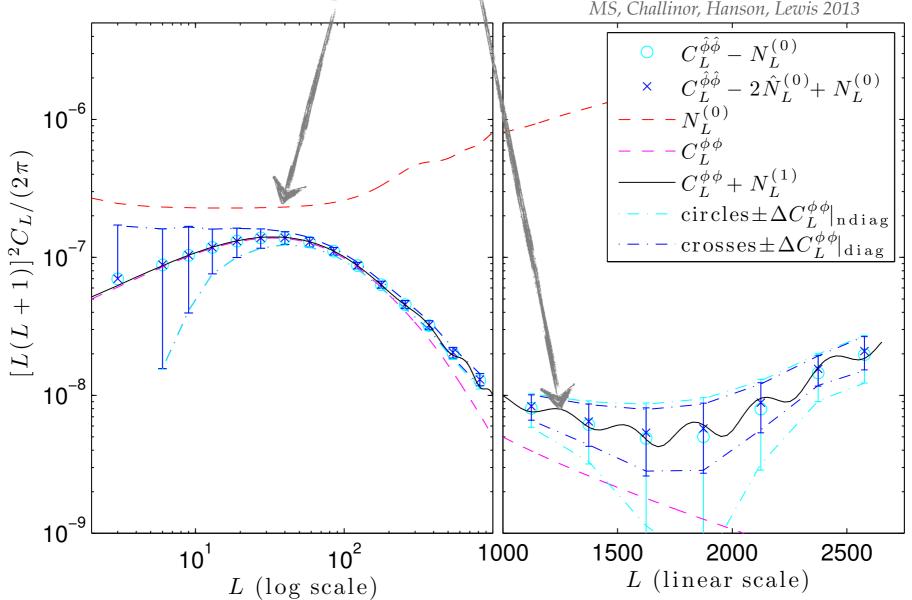
0.35

0.30

CMB LENSING RECONSTRUCTION LIKELIHOOD INGREDIENTS

For likelihood based on reconstruction power spectrum $\hat{C}^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}}\sim \tilde{T}^4$, need to know:





CMB LENSING RECONSTRUCTION LIKELIHOOD INGREDIENTS

For likelihood based on reconstruction power spectrum $\hat{C}^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}}\sim \tilde{T}^4$, need to know:

• Expectation value $\langle \hat{C}_L^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}} \rangle = N_L^{(0)} + C_L^{\phi\phi} + N_L^{(1)}$ disconn. connected 4-point 4-point

Kesden et al. 0302536; Hanson et al. 1008.4403

- Auto-covariance $\operatorname{cov}(\hat{C}_L^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}_{L'}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}})$
 - Dominant contributions from disconnected 8-point of \tilde{T} , can be diagonalised with realisation-dependent $N^{(0)}$ subtraction

Hanson et al. 1008.4403; MS, Challinor, Hanson, Lewis 1308.0286

CMB LENSING RECONSTRUCTION LIKELIHOOD INGREDIENTS

For likelihood based on reconstruction power spectrum $\hat{C}^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}} \sim \tilde{T}^4$, need to know:

• Expectation value $\langle \hat{C}_L^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}} \rangle = N_L^{(0)} + C_L^{\phi\phi} + N_L^{(1)}$ disconn. connected 4-point 4-point

Kesden et al. 0302536; Hanson et al. 1008.4403

- Auto-covariance $\operatorname{cov}(\hat{C}_L^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}_{L'}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}})$
 - Dominant contributions from disconnected 8-point of \tilde{T} , can be diagonalised with realisation-dependent $N^{(0)}$ subtraction

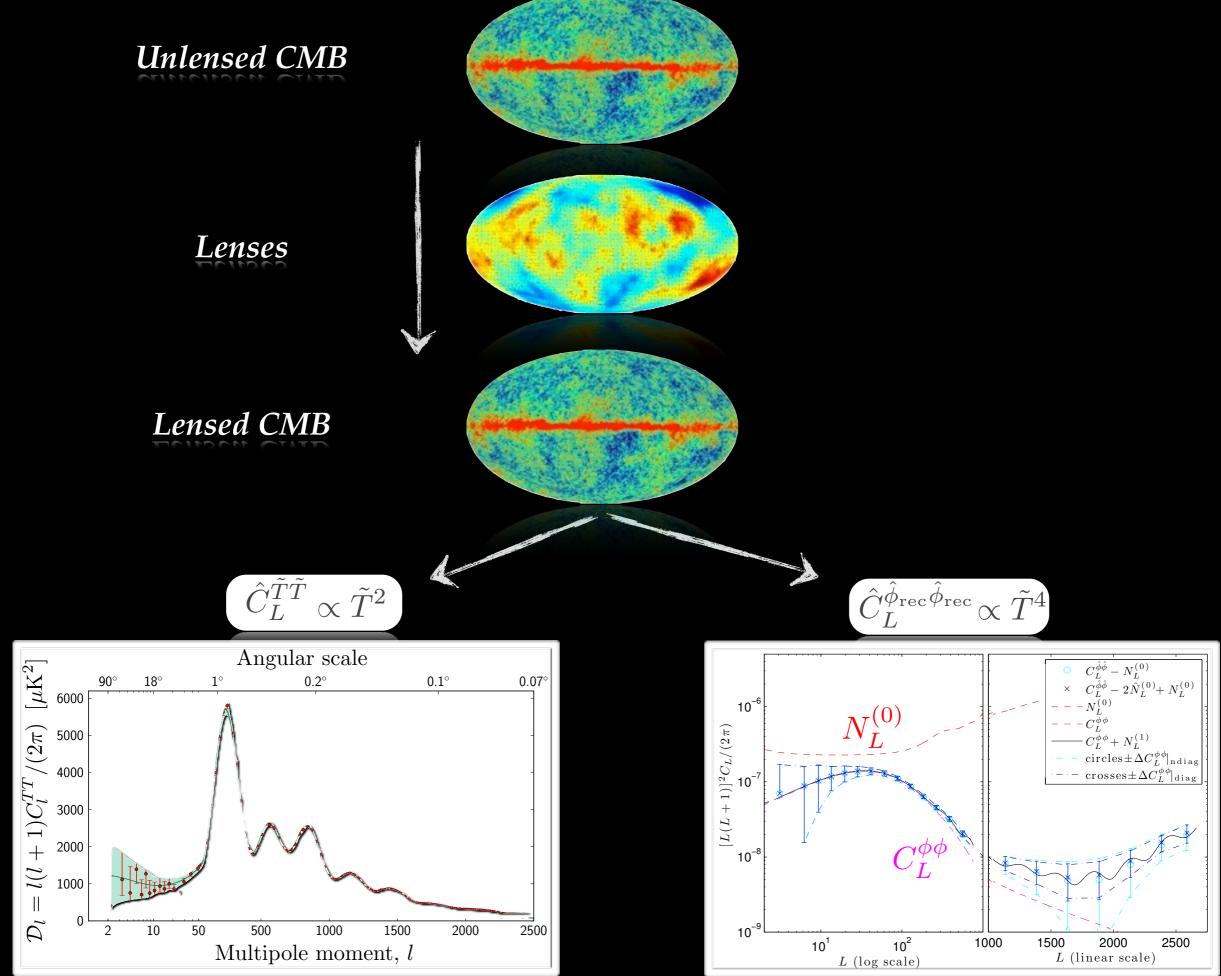
Hanson et al. 1008.4403; MS, Challinor, Hanson, Lewis 1308.0286

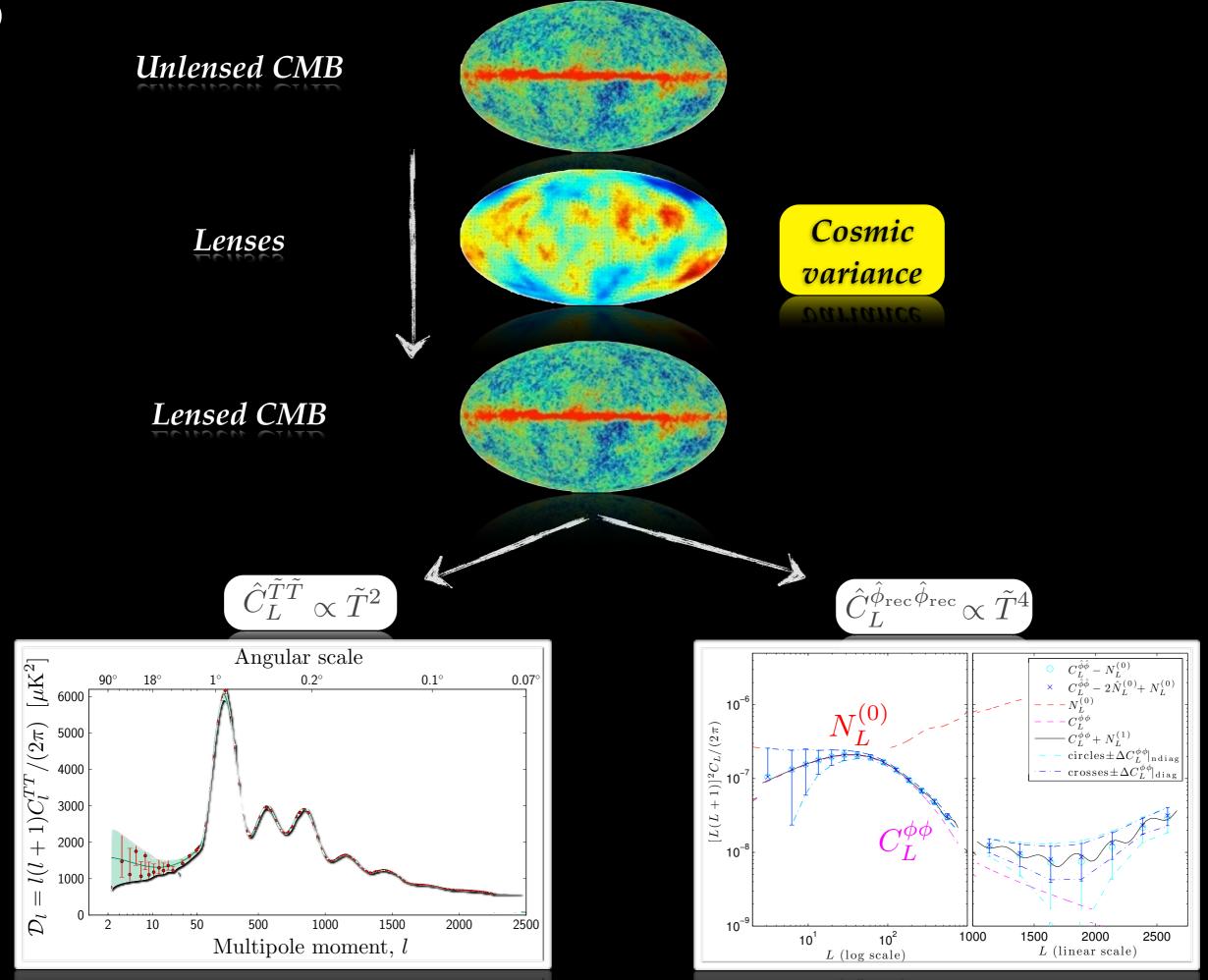
- Cross-covariance $\operatorname{cov}(\hat{C}_L^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}_{L'}^{\tilde{T}\tilde{T}})$
 - 6-point:

$$\operatorname{cov}(\hat{C}_{L}^{\hat{\phi}\hat{\phi}},\hat{C}_{L'}^{\tilde{T}\tilde{T}}) \propto \sum_{\underline{l}_{1},\underline{l}_{2},\underline{l}_{3},\underline{l}_{4},M,M'} (-1)^{M+M'} \begin{pmatrix} l_{1} & l_{2} & L \\ m_{1} & m_{2} & -M \end{pmatrix} \begin{pmatrix} l_{3} & l_{4} & L \\ m_{3} & m_{4} & M \end{pmatrix} \tilde{g}_{l_{1}l_{2}}(L) \tilde{g}_{l_{3}l_{4}}(L) \times \left[\langle \tilde{T}_{\underline{l}_{1}}\tilde{T}_{\underline{l}_{2}}\tilde{T}_{\underline{l}_{3}}\tilde{T}_{\underline{l}_{4}}\tilde{T}_{L'M'}\tilde{T}_{L',-M'} \rangle - \langle \tilde{T}_{\underline{l}_{1}}\tilde{T}_{\underline{l}_{2}}\tilde{T}_{\underline{l}_{3}}\tilde{T}_{\underline{l}_{4}} \rangle \langle \tilde{T}_{L'M'}\tilde{T}_{L',-M'} \rangle \right].$$

- (i) connected 6-point
- (ii) disconnected

(iii) connected 4-point (neglect here)





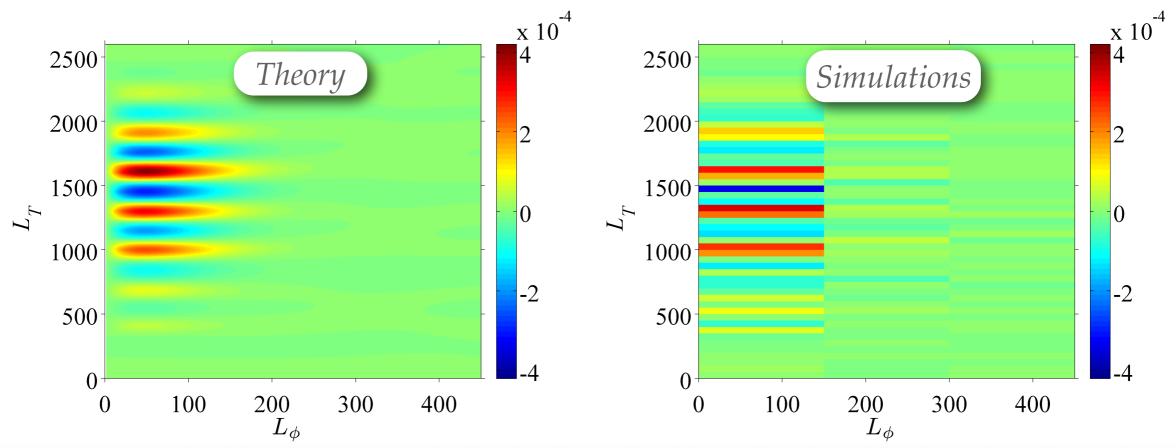
LIKELIHOOD INGREDIENTS TEMPERATURE-LENSING POWER-COVARIANCE

MS, Challinor, Hanson, Lewis 1308.0286

- (i) If lensing field fluctuates high, CMB power is smoother and reconstruction is high
 - \longrightarrow Derives from connected CMB 6-point at $\mathcal{O}(\phi^4)$

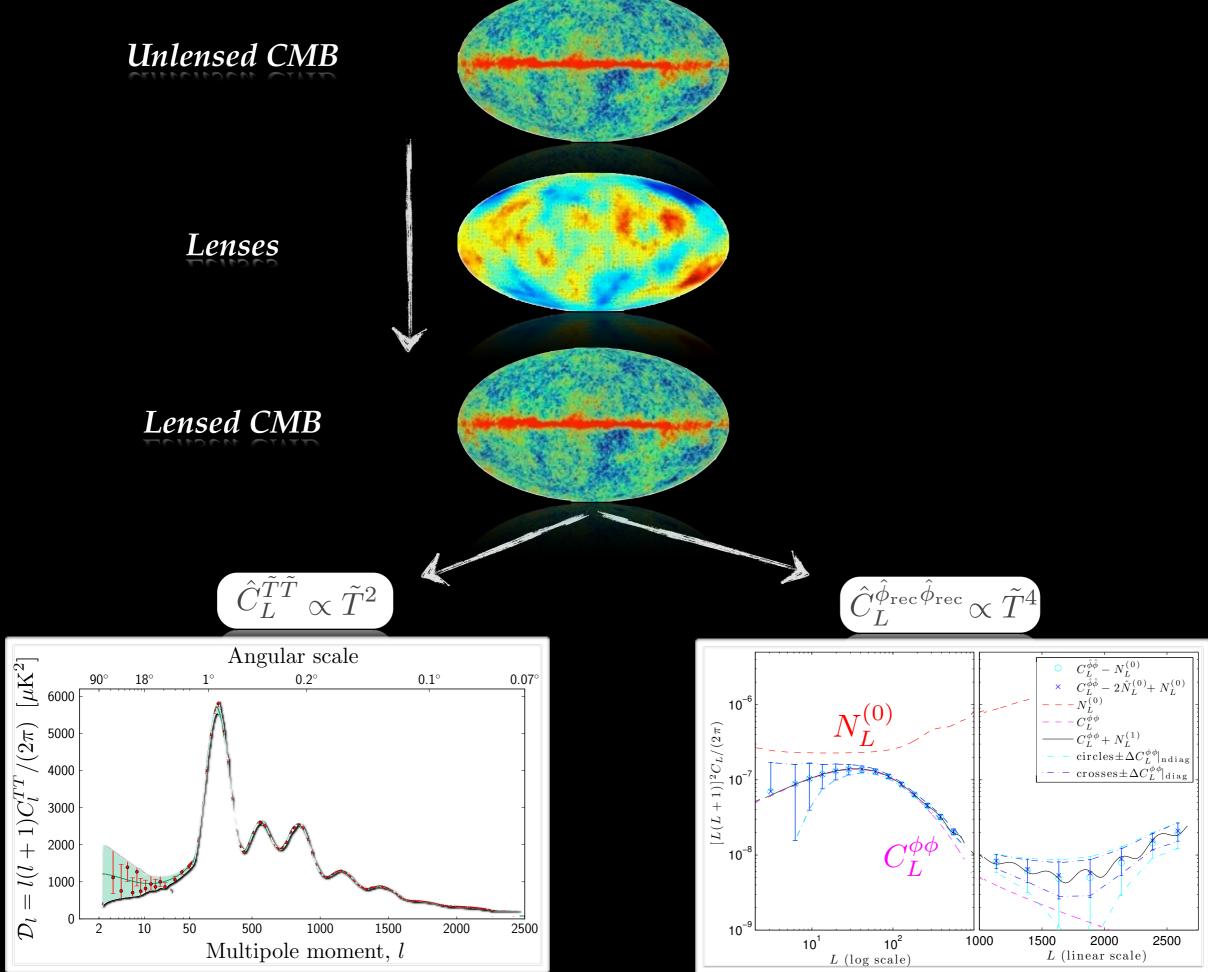
$$\operatorname{cov}(\hat{C}_{L_{\phi}}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}}, \hat{C}_{L_{T}, \operatorname{expt}}^{\tilde{T}\tilde{T}})_{\operatorname{conn.6pt.}}^{\mathcal{O}(\phi^{4})} = \frac{2}{2L_{\phi} + 1} \left(C_{L_{\phi}}^{\phi\phi}\right)^{2} \frac{\partial C_{L_{T}}^{TT}}{\partial C_{L_{\phi}}^{\phi\phi}}$$

Correlation of *unbinned* power spectra is up to $\sim 0.04\%$ (at low $L_{\phi}!$):



Minima at acoustic peaks of temperature power which are decreased by larger lensing power; maxima at acoustic troughs

(ii)



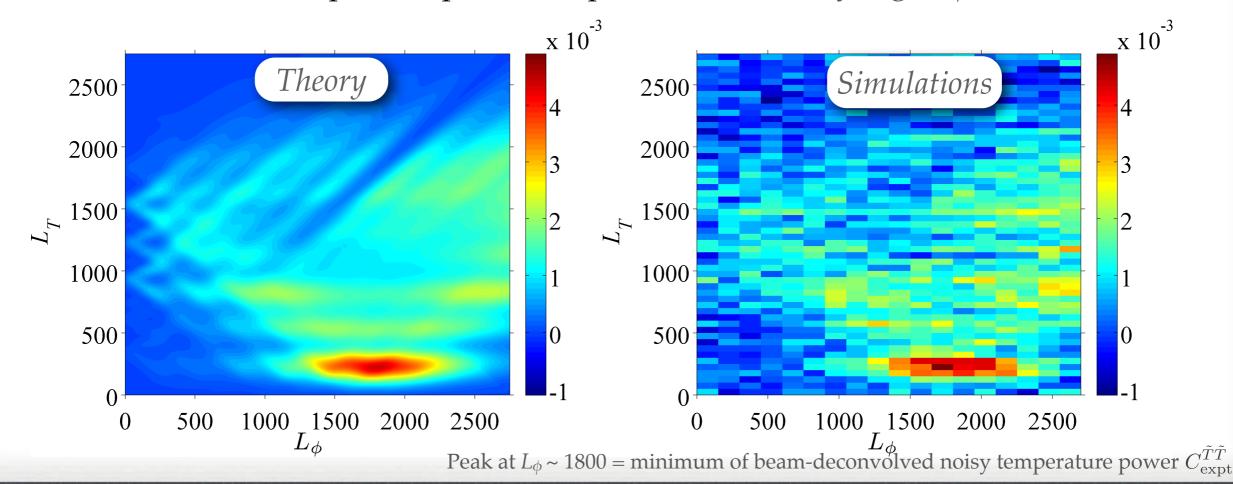
LIKELIHOOD INGREDIENTS TEMPERATURE-LENSING POWER-COVARIANCE

MS, Challinor, Hanson, Lewis 1308.0286

- (ii) If unlensed CMB fluctuates high, CMB power and Gaussian rec. noise $N^{(0)}$ are high
 - Derives from disconnected CMB 6-point

$$\operatorname{cov}(\hat{C}_{L_{\phi}}^{\hat{\phi}_{rec}\hat{\phi}_{rec}}, \hat{C}_{L_{T}, expt}^{\tilde{T}\tilde{T}})_{disc.}^{\mathcal{O}(\phi^{0})} = \frac{\partial(2\hat{N}_{L_{\phi}}^{(0)})}{\partial\hat{C}_{L_{T}, expt}^{\tilde{T}\tilde{T}}} \frac{2}{2L_{T} + 1} \left(C_{L_{T}, expt}^{\tilde{T}\tilde{T}}\right)^{2}$$

Correlation of *unbinned* power spectra is up to ~0.5% (at very high L_{ϕ}):



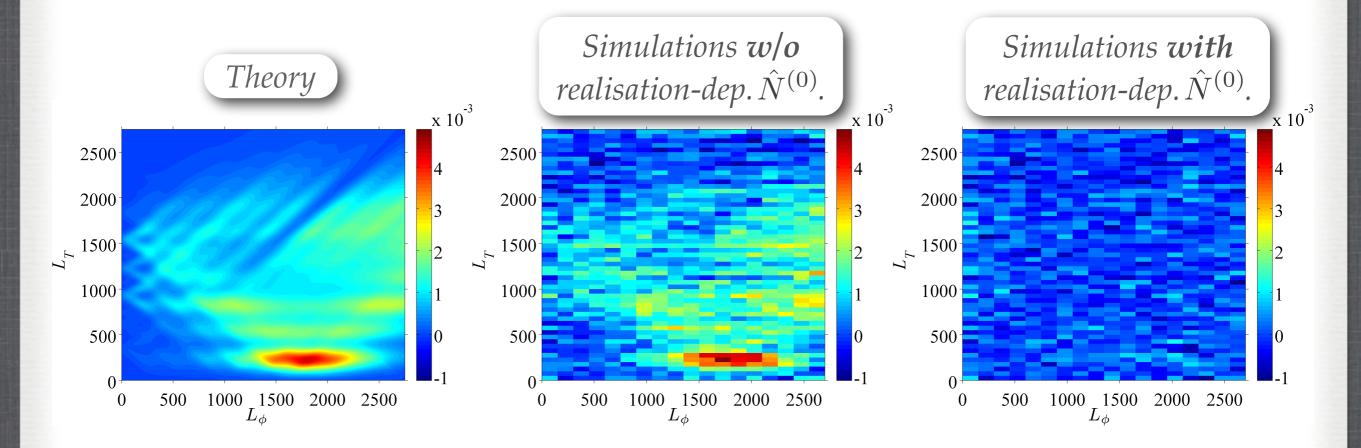
LIKELIHOOD INGREDIENTS TEMPERATURE-LENSING POWER-COVARIANCE

MS, Challinor, Hanson, Lewis 1308.0286

Decorrelating power spectra

Can remove noise contribution (ii) with realisation-dependent bias correction

$$\hat{C}_L^{\hat{\phi}\hat{\phi}} - 2\hat{N}_L^{(0)} = \hat{C}_L^{\hat{\phi}\hat{\phi}} - \sum_{L'} \frac{\partial(2\hat{N}_L^{(0)})}{\partial\hat{C}_{L',\text{expt}}^{\tilde{T}\tilde{T}}} \hat{C}_{L',\text{expt}}^{\tilde{T}\tilde{T}}$$



This also mitigates the off-diagonal reconstruction power *auto*-covariance (for the same reason); can be understood from optimal trispectrum estimation

OPTIMAL TRISPECTRUM ESTIMATION

Obtain realisation-dependent $\hat{N}^{(0)}$ bias mitigation also from optimal trispectrum estimator using Edgeworth-expansion of lensed temperature around Gaussian:

$$T_i$$
 = lensed temperature $C_{ij} = \langle T_i T_j \rangle$ $\bar{T}_i = C_{ij}^{-1} T_j$

IMPACT OF $\operatorname{cov}(\hat{C}_{L}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}_{L'}^{\tilde{T}\tilde{T}})$ LENSING AMPLITUDE

MS, Challinor, Hanson, Lewis 1308.0286

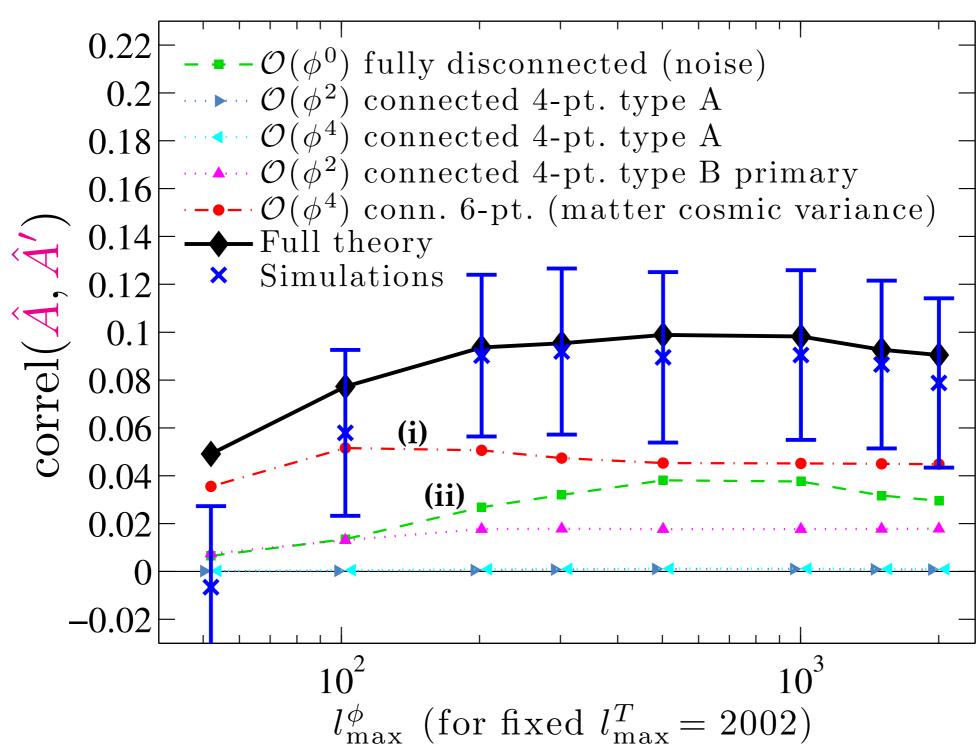
Impact of temperature-lensing power covariance on **lensing amplitude** *A*:

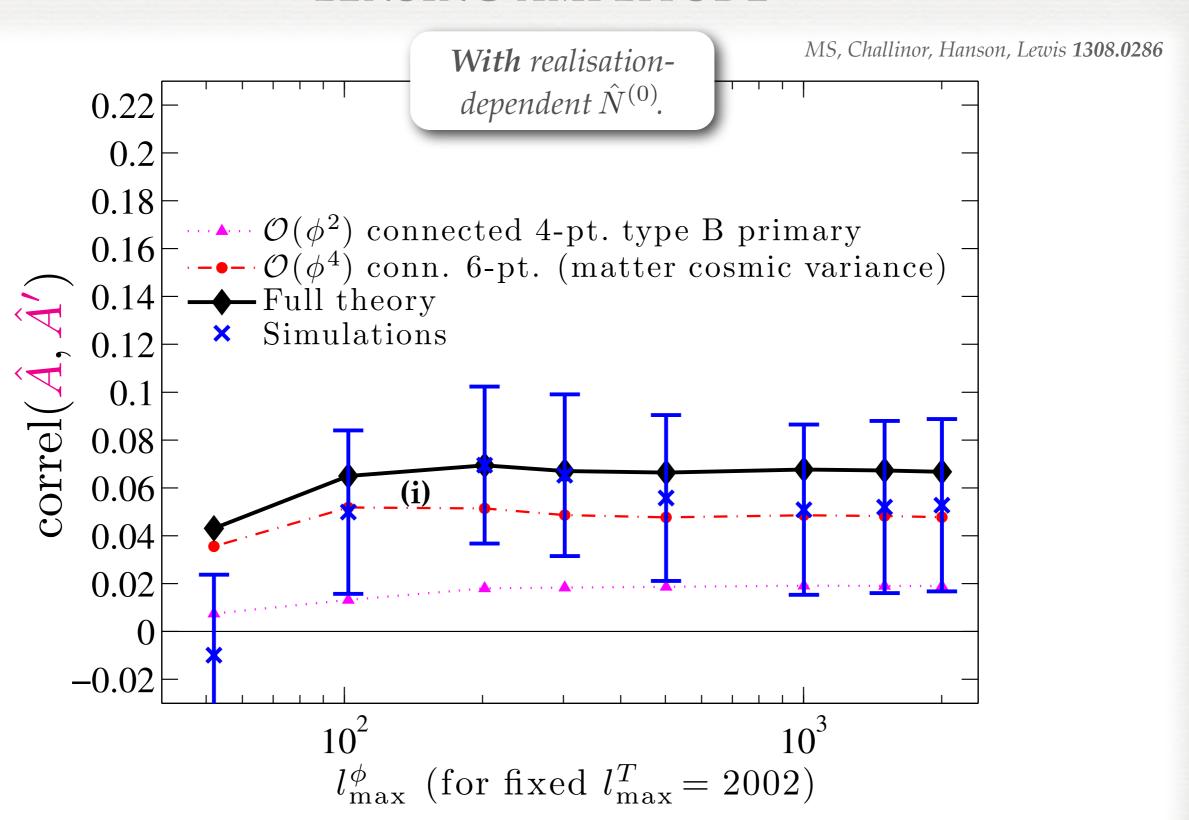
• Rescale lensing power spectrum $C_L^{\phi\phi} \to AC_L^{\phi\phi}$

$$C_L^{\phi\phi} \to A C_L^{\phi\phi}$$

- Estimate from reconstruction power spectrum, $\hat{A}[\hat{C}^{\phi\phi}]$
- and from smoothing of temperature power spectrum, $\hat{A}'[\hat{C}_{\mathrm{expt}}^{\hat{T}\hat{T}}]$
 - $\operatorname{cov}(\hat{A}, \hat{A}')$ is linearly related to $\operatorname{cov}(\hat{C}_{L}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}}, \hat{C}_{L'}^{\tilde{T}\tilde{T}})$

MS, Challinor, Hanson, Lewis 1308.0286





MS, Challinor, Hanson, Lewis 1308.0286

Neglecting $\operatorname{cov}(\hat{C}_L^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}_{L'}^{\tilde{T}\tilde{T}})$ underestimates error of joint amplitude estimate by

$$\Delta \sigma_{A_{\rm joint}} \sim \operatorname{correl}(\hat{A}, \hat{A}')/2 \sim 3.5\%$$

(with realisation-dependent $\hat{N}^{(0)}$, otherwise ~ 5%)

Temperature-lensing power-covariance is negligible for combined amplitude estimate (and for cosmological parameters)

MS, Challinor, Hanson, Lewis 1308.0286

Physical reasons for smallness of amplitude correlation

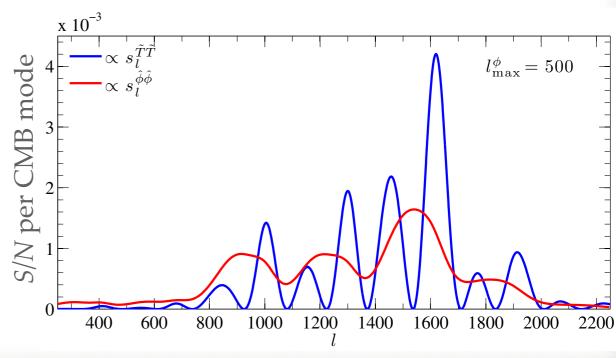
- (i) Lens cosmic variance
- cov(A,A') is limited by the small number of $C^{\phi\phi}$ modes affecting acoustic region of $C^{\tilde{T}\tilde{T}}$ (including more lensing modes in $A[C^{\phi\phi}]$ reduces cov(A,A') because there are increasingly more lensing modes in $A[C^{\phi\phi}]$ whose fluctuations don't enter $A'[C^{\tilde{T}\tilde{T}}]$).
- correl(A,A') due to cosmic variance of these modes is diluted by CMB cosmic variance and instrumental noise (because A and A' are not limited by cosmic variance of the lenses)

MS, Challinor, Hanson, Lewis 1308.0286

Physical reasons for smallness of amplitude correlation

- (i) Lens cosmic variance
- cov(A,A') is limited by the small number of $C^{\phi\phi}$ modes affecting acoustic region of $C^{\tilde{T}\tilde{T}}$ (including more lensing modes in $A[C^{\phi\phi}]$ reduces cov(A,A') because there are increasingly more lensing modes in $A[C^{\phi\phi}]$ whose fluctuations don't enter $A'[C^{\tilde{T}\tilde{T}}]$).
- correl(*A*,*A*′) due to cosmic variance of these modes is diluted by CMB cosmic variance and instrumental noise (because *A* and *A*′ are not limited by cosmic variance of the lenses)
- (ii) CMB cosmic variance

Roughly disjoint (independently fluctuating) scales in the CMB contribute to amplitude determination from peaksmearing and to lens reconstruction



MS, Challinor, Hanson, Lewis 1308.0286

Impact of $\operatorname{cov}(\hat{C}_{L}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}_{L'}^{\tilde{T}\tilde{T}})$ on phys. params. $\mathbf{p}=(\Omega_b h^2,\Omega_c h^2,h,\tau,A_s,n_s,\Omega_{\nu}h^2,\Omega_K)$

- Joint data vector: $\hat{\underline{C}} = (\hat{C}_{\mathrm{expt}}^{\tilde{T}\tilde{T}}, \hat{C}^{\hat{\phi}\hat{\phi}} 2\hat{N}^{(0)} + N^{(0)})$
- Joint covariance

$$\operatorname{cov}_{LL',\,\operatorname{joint}} \equiv \operatorname{cov}(\underline{\hat{C}}_L,\underline{\hat{C}}_{L'}) = \begin{pmatrix} \delta_{LL'} \operatorname{var}_G(C_{L,\operatorname{expt}}^{\tilde{T}\tilde{T}}) & \operatorname{cov}(\hat{C}_L^{\tilde{T}\tilde{T}},\hat{C}_{L'}^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}}) \\ \operatorname{cov}(\hat{C}_L^{\hat{\phi}_{\operatorname{rec}}\hat{\phi}_{\operatorname{rec}}},\hat{C}_{L'}^{\tilde{T}\tilde{T}}) & \delta_{LL'} \operatorname{var}_G(\langle \hat{C}_L^{\hat{\phi}\hat{\phi}} \rangle) \end{pmatrix}$$

- Fisher matrix: $F_{ij} = \sum_{LL'} \frac{\partial \underline{C}_L}{\partial p_i} (\text{cov}_{\text{joint}}^{-1})_{LL'} \frac{\partial \underline{C}_{L'}}{\partial p_j}$
 - Fisher errors increase by at most 0.7% if $\text{cov}(\hat{C}_L^{\hat{\phi}_{\text{rec}}\hat{\phi}_{\text{rec}}},\hat{C}_{L'}^{\tilde{T}\tilde{T}})$ is included
 - Temperature-lensing power-covariance negligible for physical parameter errors

CMB LENSING RECONSTRUCTION LIKELIHOOD FORM

MS, Challinor, Hanson, Lewis 1308.0286

So far assumed likelihood based on reconstruction power $\hat{C}^{\hat{\phi}_{rec}\hat{\phi}_{rec}}$ instead of $\hat{\phi}_{rec}$ map

- → Well established for temperature, but unclear for (non-Gaussian) reconstruction
- Compare two lensing-likelihood models:
 - 1. Gaussian in $\hat{\phi}_{rec}$:

$$-2\ln \mathcal{L}_1(\hat{\phi}|A) \propto \sum_l (2l+1) \left(\frac{\hat{C}_l^{\hat{\phi}\hat{\phi}}}{AC_l^{\phi\phi} + N_l} + \ln |AC_l^{\phi\phi} + N_l| \right)$$

2. Gaussian in $\hat{C}^{\hat{\phi}_{rec}\hat{\phi}_{rec}}$ (with parameter-independent covariance):

$$-2\ln\mathcal{L}_2(\hat{C}^{\hat{\phi}\hat{\phi}}|A) \propto \sum_{l,l'} \left[\hat{C}_l^{\hat{\phi}\hat{\phi}} - (AC_l^{\phi\phi} + N_l) \right] (\cot^{-1}_{\phi\phi})_{ll'} \left[\hat{C}_{l'}^{\hat{\phi}\hat{\phi}} - (AC_{l'}^{\phi\phi} + N_{l'}) \right]$$

Estimate lensing amplitude (and tilt) from both likelihoods, compare scatter of best-fit parameter vs. likelihood width

CMB LENSING RECONSTRUCTION LIKELIHOOD FORM

MS, Challinor, Hanson, Lewis 1308.0286

So far assumed likelihood based on reconstruction power $\hat{C}^{\hat{\phi}_{rec}\hat{\phi}_{rec}}$ instead of $\hat{\phi}_{rec}$ map

- Well established for temperature, but unclear for (non-Gaussian) reconstruction
- Compare two lensing-likelihood models:
 - 1. Gaussian in $\hat{\phi}_{rec}$:

$$-2\ln\mathcal{L}_1(\hat{\phi}|A) \propto \sum_l (2l+1) \left(\frac{\hat{C}_l^{\hat{\phi}\hat{\phi}}}{AC_l^{\phi\phi} + N_l} + \ln|AC_l^{\phi\phi} + N_l| \right)$$

2. Gaussian in $\hat{C}^{\hat{\phi}_{rec}\hat{\phi}_{rec}}$ (with parameter-independent covariance):

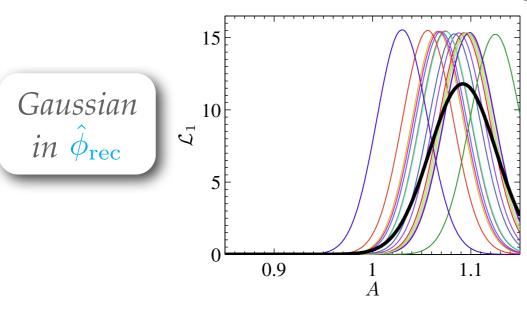
$$-2\ln\mathcal{L}_2(\hat{C}^{\hat{\phi}\hat{\phi}}|A) \propto \sum_{l,l'} \left[\hat{C}_l^{\hat{\phi}\hat{\phi}} - (AC_l^{\phi\phi} + N_l) \right] (\cos^{-1}_{\phi\phi})_{ll'} \left[\hat{C}_{l'}^{\hat{\phi}\hat{\phi}} - (AC_{l'}^{\phi\phi} + N_{l'}) \right]$$

- ➡ Estimate lensing amplitude (and tilt) from both likelihoods, compare scatter of best-fit parameter vs. likelihood width
 - → 2. performs better than 1. (see paper)

CMB LENSING RECONSTRUCTION LIKELIHOOD TESTS

MS, Challinor, Hanson, Lewis 1308.0286

Scatter of best-fit lensing amplitude A vs. likelihood width in single realisations



(a) \mathcal{L}_1 without $N^{(1)}$: biased



(b) \mathcal{L}_1 with $N^{(1)}$: unbiased but underestimates variance

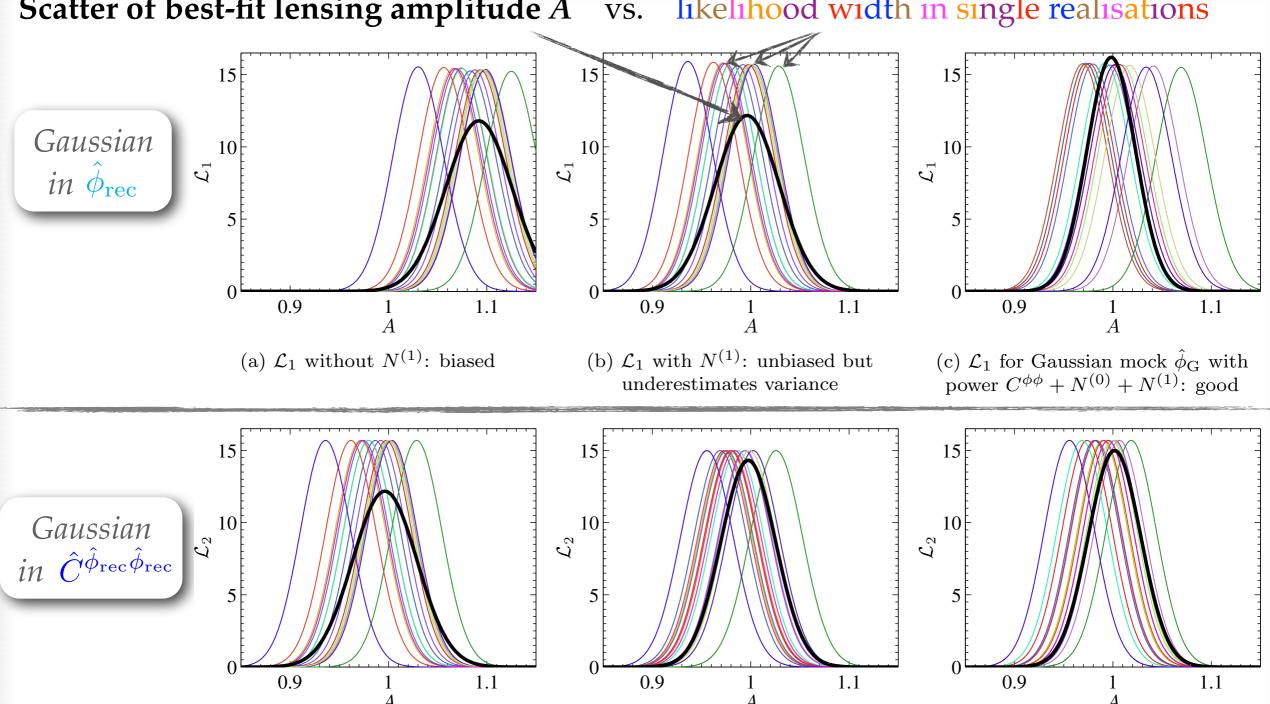


(c) \mathcal{L}_1 for Gaussian mock $\hat{\phi}_G$ with power $C^{\phi\phi} + N^{(0)} + N^{(1)}$: good

CMB LENSING RECONSTRUCTION LIKELIHOOD TESTS

MS, Challinor, Hanson, Lewis 1308.0286

Scatter of best-fit lensing amplitude A vs. likelihood width in single realisations



(d) \mathcal{L}_2 with diagonal covariance: underestimates variance

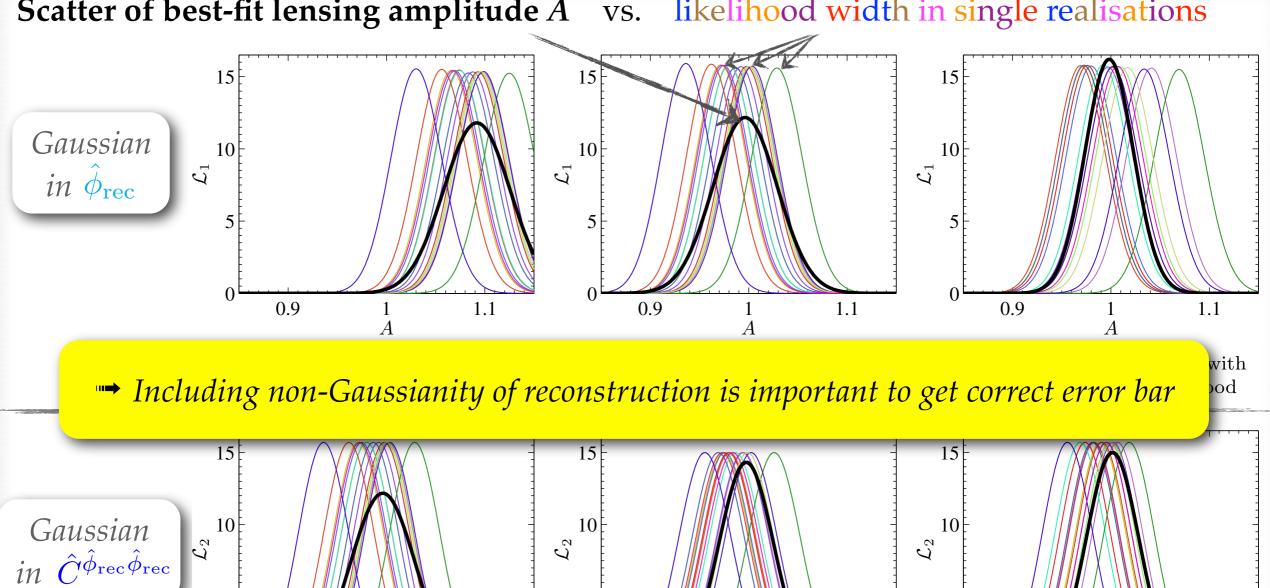
covariance: good

(e) \mathcal{L}_2 with non-diagonal, non-Gaussian (f) \mathcal{L}_2 with empirical $\hat{N}^{(0)}$ subtraction and diagonal covariance: good

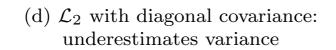
CMB LENSING RECONSTRUCTION LIKELIHOOD TESTS

MS, Challinor, Hanson, Lewis 1308.0286

Scatter of best-fit lensing amplitude A vs. likelihood width in single realisations

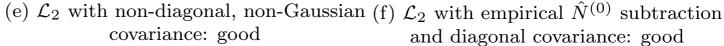


0.9



1.1

0.9



1.1

and diagonal covariance: good

1.1

0.9

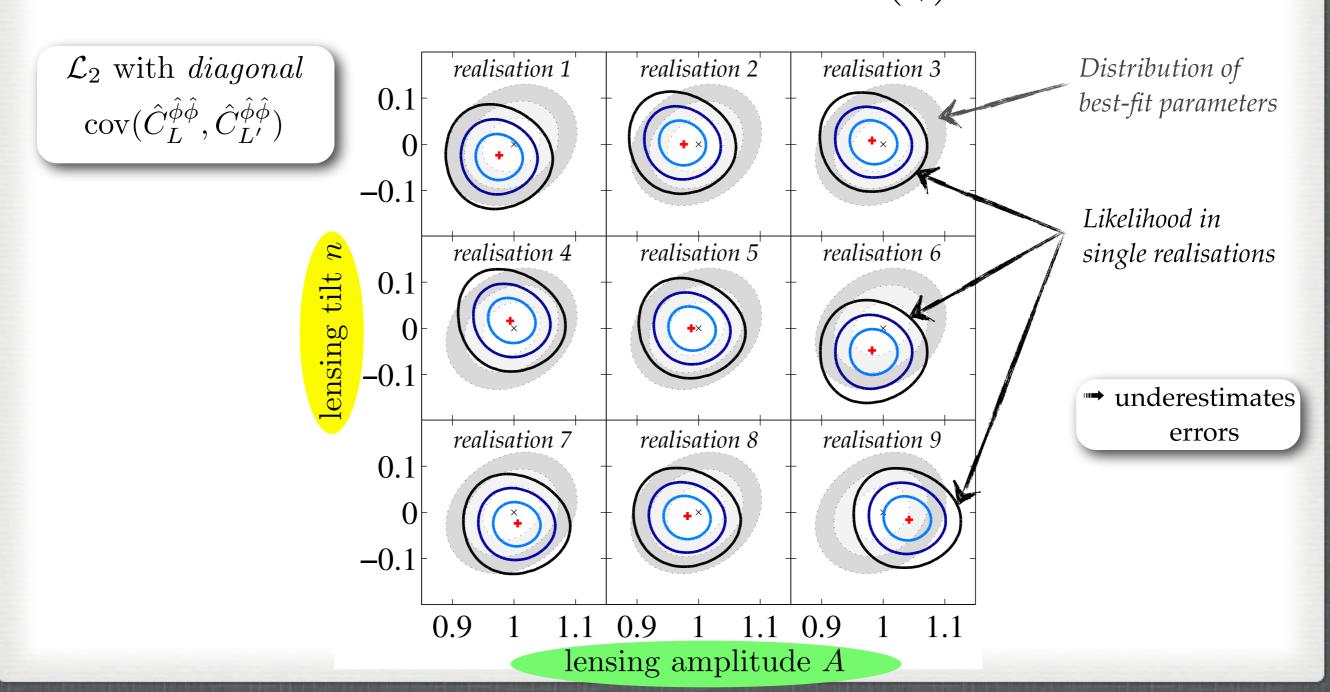
CMB LENSING RECONSTRUCTION

LIKELIHOOD TESTS

MS, Challinor, Hanson, Lewis 1308.0286

For \mathcal{L}_2 , we do not test the likelihood but rather the reconstruction power covariance (because $\hat{A} \propto \hat{C}^{\hat{\phi}\hat{\phi}}$)

Additionally vary lensing tilt n to test \mathcal{L}_2 : $C_l^{\phi\phi} \to A\left(\frac{l}{l_*}\right)^n C_l^{\phi\phi}, \qquad l_* = 124$



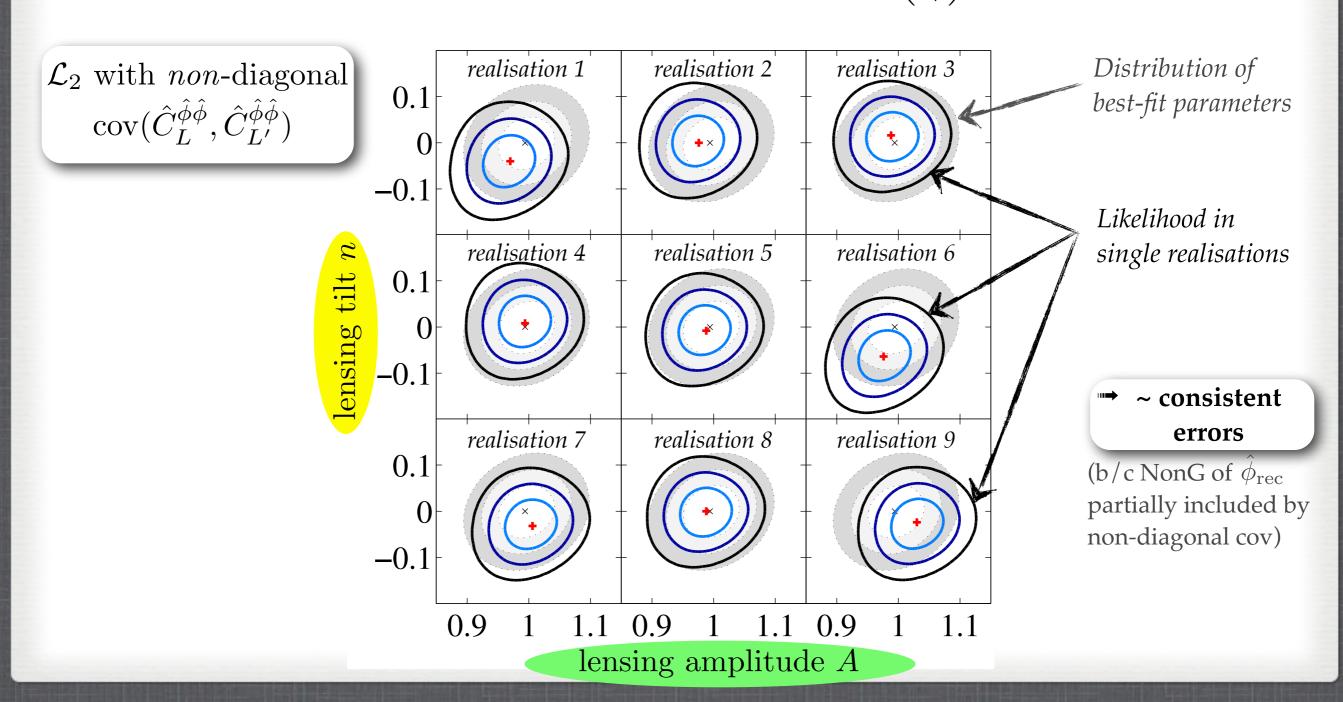
CMB LENSING RECONSTRUCTION

LIKELIHOOD TESTS

MS, Challinor, Hanson, Lewis 1308.0286

For \mathcal{L}_2 , we do not test the likelihood but rather the reconstruction power covariance (because $\hat{A} \propto \hat{C}^{\hat{\phi}\hat{\phi}}$)

Additionally vary lensing tilt n to test \mathcal{L}_2 : $C_l^{\phi\phi} \to A \left(\frac{l}{l_*}\right)^n C_l^{\phi\phi}, \qquad l_* = 124$



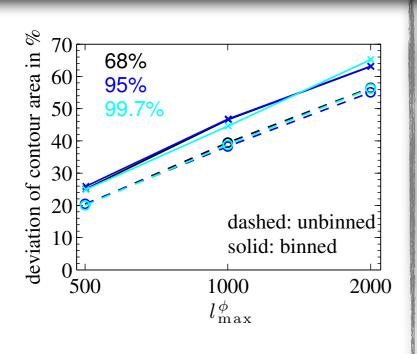
CMB LENSING RECONSTRUCTION LIKELIHOOD TESTS: QUANTITATIVELY

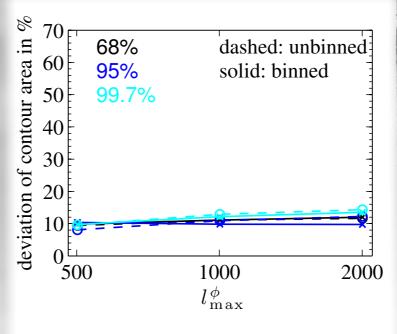
 \mathcal{L}_2 with diagonal $\operatorname{cov}(\hat{C}_L^{\hat{\phi}\hat{\phi}}, \hat{C}_{L'}^{\hat{\phi}\hat{\phi}})$

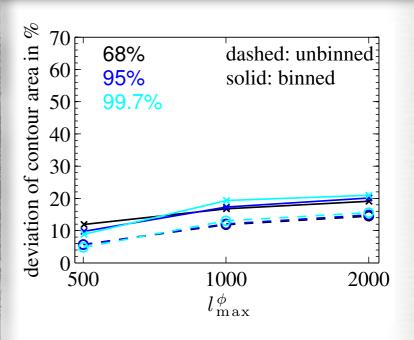
 \mathcal{L}_2 with non-diagonal $\operatorname{cov}(\hat{C}_L^{\hat{\phi}\hat{\phi}}, \hat{C}_{L'}^{\hat{\phi}\hat{\phi}})$

 \mathcal{L}_2 with diagonal $\operatorname{cov}(\hat{C}_L^{\hat{\phi}\hat{\phi}}, \hat{C}_{L'}^{\hat{\phi}\hat{\phi}})$ and realisation-dep. $\hat{N}^{(0)}$

Deviation of areas of confidence ellipses







Fractional error of marginalised error bars of A or n: ~ (area dev.)/2

~ 34%

~ 8%

~ 11%

 \mathcal{L}_2 is accurate likelihood approximation if non-diagonal $\operatorname{cov}(\hat{C}_L^{\hat{\phi}\hat{\phi}},\hat{C}_{L'}^{\hat{\phi}\hat{\phi}})$ or $\hat{N}^{(0)}$ is used

CONCLUSIONS

MS, Challinor, Hanson, Lewis 1308.0286

• Understand non-Gaussianity of ϕ_{rec} and correlation with temperature analytically

$$\operatorname{cov}(\hat{C}_{L_{\phi}}^{\hat{\phi}_{\mathrm{rec}}\hat{\phi}_{\mathrm{rec}}},\hat{C}_{L_{T},\mathrm{expt}}^{\tilde{T}\tilde{T}}) = \frac{\partial(2\hat{N}_{L_{\phi}}^{(0)})}{\partial\hat{C}_{L_{T},\mathrm{expt}}^{\tilde{T}\tilde{T}}} \frac{2}{2L_{T}+1} \left(C_{L_{T},\mathrm{expt}}^{\tilde{T}\tilde{T}}\right)^{2} \left[1 + 2\frac{C_{L_{\phi}}^{\phi\phi}}{A_{L_{\phi}}}\right] + \frac{2}{2L_{\phi}+1} \left(C_{L_{\phi}}^{\phi\phi}\right)^{2} \frac{\partial C_{L_{T}}^{\tilde{T}\tilde{T}}}{\partial C_{L_{\phi}}^{\phi\phi}}$$

$$\begin{array}{c} \text{noise contribution} \\ \text{(disconnected 6-point)} \end{array} \qquad \begin{array}{c} \text{connected} \\ \text{4-point} \end{array} \qquad \begin{array}{c} \text{matter cosmic variance} \\ \text{(connected 6-point)} \end{array}$$

- Found methods to treat/mitigate both
- This has significantly simplified joint analysis of $C^{\tilde{T}\tilde{T}}$ and $\phi_{\rm rec}$ for Planck:

no cross-term!

- Likelihoods can be modeled separately, $\ln \mathcal{L}(C^{\tilde{T}\tilde{T}}, \phi_{\text{rec}}) = \ln \mathcal{L}(C^{\tilde{T}\tilde{T}}) + \ln \mathcal{L}_2(\phi_{\text{rec}})$
- Non-Gaussianity of $\phi_{\rm rec}$ modeled by likelihood that's Gaussian in $\hat{C}^{\hat{\phi}_{\rm rec}\hat{\phi}_{\rm rec}}$

